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Abstract

The ability to imitate others enables human infants to acquire various social and cognitive capabilities.
Joint attention is regarded as a behavior that can be derived from imitation. In this paper, the devel-
opmental relationship between imitation and joint attention, and the role of motion information in the
development are investigated from a viewpoint of cognitive developmental robotics. It is supposed
in my developmental model that an infant-like robot first has the experiences of visually tracking a
human face based on the ability to preferentially look at salient visual stimuli. The experiences allow
the robot to acquire the ability to imitate head movement by finding an equivalence between the hu-
man’s head movement and the robot’'s when tracking the human who is turning his/her head. Then,
the robot changes its gaze from tracking the human face to looking at an object at which the human
has also looked at based on the abilities to imitate a head turning and gaze at a salient object. Through
the experiences, the robot comes to learn joint attention behavior based on the contingency between
the head movement and the object appearance. The movement information which the robot perceive
plays an important role in facilitating the development of imitation and joint attention because it gives
an easily understandable sensorimotor relationship. The developmental model is examined in learning

experiments focusing on evaluating the role of movement in joint attention. Experimental results show
that the acquired sensorimotor coordination for joint attention involves the equivalence between the
human’s head movement and the robot’s, which can be a basis for head movement imitation.

1 Introduction

Neonatal imitation is a remarkable capability in hu-
man development. Such behavior might tell us that
infants can associate their own action with others’
action they see. The ability to imitate enables in-
fants to acquire social identification and further so-
cial and cognitive capabilities (Meltzoff and Moore,
1997). Through the experiences of reproducing oth-
ers’ action, infants come to be able to understand the
meaning of the action and the others’ intention. Joint
attention (Scaife and Bruner, 1975; Butterworth and
Jarrett, 1991; Moore and Dunham, 1995) is one of the
capabilities that can be derived from imitation. It is
defined as a behavior to look where someone else is
looking by following his/her gaze. In other words,
joint attention is regarded as a type of imitative be-
havior that one turns one’s own head and eyes towards
the same side as another turns his/hers.

In this paper, the developmental relationship be-
tween imitation and joint attention, and the role of

movement information in the development are dis-
cussed. Many researchers in cognitive science and
developmental psychology have been investigating
the capabilities of imitation and joint attention as
the basis for infant development (Moore and Dun-
ham, 1995). However, it is difficult to find the study
in which the developmental relationship between the
two abilities was examined. As described above, joint
attention is an imitative behavior to copy others’ head
and eyes turning. It can emerge in infant-caregiver in-
teractions when either of them, mostly a caregiver,
introduces an object into their dyadic interactions
based on the imitation. Considering the developmen-
tal progress from the dyadic to the triadic interaction,
i.e. joint attention, is important for understanding the
social and cognitive development in infants. This pa-
per presents the developmental progress by which an
infant-like robot incrementally learns to imitate and
establish joint attention through interactions with a
human caregiver. It is discussed from a standpoint of
cognitive developmental robotics (Asada et al., 2001)



what capabilities a robot should be equipped with
for interacting with an environment and learning the
experiences, and how a caregiver should encourage
and support the robot's development. As a key for
the consecutive development from imitation to joint
attention, a robot employs movement as its percep-
tual information. It is known in infant development
that the motion information facilitates the develop-
ment of the two abilities, e.g. (Vinter, 1986; Moore
et al.,, 1997). Infants are more able to imitate oth-
ers’ action and comprehend others’ gaze when they
are presented with the behavior with the movement
rather than without the movement. On the basis of
the knowledge, a learning model by which a robot ac-
quires joint attention ability through the experiences
of head movement imitation by using motion infor-
mation is proposed.

The rest of the paper is organized as follows. First,
the findings about imitation and joint attention in in-
fants are referred, in which the role of movement in
the development is suggested. The finding of head
movement imitation is also indicated, which is con-
sidered as a basis for joint attention development.
Then, the current robotics models of imitation and
joint attention are reported. Various models have
been proposed with the aim of investigating infant
development and/or constructing intelligent robots.
The problems that the models did not deal with the
developmental progress between imitation and joint
attention and did not utilize motion information are
pointed out. Next, a developmental model by which
a robot learns joint attention based on head move-
ment imitation is proposed. By utilizing motion infor-
mation, a robot incrementally learns to imitate head
movement and achieve joint attention without any
priori or symbolic representation for perceptual in-
formation given by a designer. Experiments that ex-
amined the validity of the model by using an infant-
like robot are then described. Finally, discussion and
ongoing work are given.

2 Related work on imitation and
joint attention

2.1 Findings from infant studies

Meltzoff and Moore (1977, 1989) investigated the
ability to imitate in infants at a few days or a few
weeks of age. They found that infants were able to
imitate facial and manual gestures and head move-
ments demonstrated by an adult. On the basis of the
finding, Meltzoff and his colleagues (Meltzoff and

Moore, 1997; Rao and Meltzoff, 2003) proposed an
active intermodal mapping model as the mechanism
for early facial imitation. According to their model,
infants can imitate an action by evaluating the equiv-
alence between the action they see and their own ac-
tion in a supra-modal representational space. In con-
trast, Jacobson (1979) suggested that facial and man-
ual gestures of infants could be elicited by the presen-
tation of a moving object. She showed that a moving
pen and a ball were as effective as the tongue model
of an adult in eliciting tongue protrusion by infants,
and that a dangling ring elicited as much hand open-
ing and closing as the adult hand model. This find-
ing suggests that the motion information which in-
fants perceive plays an important role in their early
imitation. Vinter (1986) also indicated the signifi-
cance of motion information in infant imitation. She
showed that infants were more likely to imitate facial
and manual gestures when they were presented with
the gestures with the movement rather than without
the movement. The reason was conjectured that the
movement which infants perceive is effective in en-
coding their perceptual information.

Joint attention development has also been sug-
gested to be facilitated by motion information. Moore
et al. (1997) compared the infants’ ability to learn
gaze following when infants were presented with
the final static state of an adult’s head turning and
the ability when infants were presented with the
head turning with the movement. Their compar-
ison showed that only infants presented with the
movement were able to learn to establish gaze fol-
lowing. Lempers (1979) studied the developmental
change in the ability to comprehend deictic gestures
of infants at 9 to 14 months of age. His observa-
tional results showed that motion information helped
younger infants to understand others’ pointing and
gaze. Corkum and Moore (1998) investigated the ori-
gin of joint attention and found that infants have a de-
velopmental stage at which they respond sensitively
to the movement of an adults’ gaze shift. They also
examined the learning performance of joint attention
in infants by presenting the infants with unnatural sit-
uations in which an interesting target appeared in the
opposite side to the direction of an adult’s head turn-
ing. Their examination showed that infants did not
acquire the behavior to look at the object by turn-
ing to the opposite side of the head turning, but ac-
quired the behavior to follow the adult’'s head turning
although they could not find any object. This means
that the learning mechanism of joint attention is not
only based on the contingency between the adult’s
head turning and the object activation but also facil-



itated by the physical characteristics of the adult ac-
tion, i.e. the direction of the head movement. | sup-
pose from the result that infants learn the relationship
between their own action and others’ action before
learning to find an object based on the others’ cue.

2.2 Computational and robotic models

In order to investigate infant development and/or con-
struct intelligent robots, computational and robotic
models of imitation and joint attention have been
proposed based on the findings from infant stud-
ies. Demiris and his colleagues (Demiris and Hayes,
1996; Demiris et al., 1997) constructed a model of
head movement imitation based on the scheme of
the active intermodal mapping proposed by (Melt-
zoff and Moore, 1997). Their model enabled a robot
to imitate a human’s head movement by establishing
an equivalence between the human’s head posture,
which was estimated from the movement detected as
an optical flow, and the robot's posture, which was
given as encoder values. Scassellati (1999) built a
humanoid robot that could imitate yes/no nods of a
human. In his model, a robot recognized the yes/no
nods by detecting the cumulative displacement of a
human face in the robot’s vision and then drove the
fixed-action patterns for moving the robot's head as
an imitative behavior.

The author (Nagai et al., 2002, 2003) proposed de-
velopmental models by which a robot learned joint at-
tention through interactions with a human caregiver.
| investigated how a robot with limited and immature
capabilities could acquire the joint attention ability
based on the evaluation from a caregiver or based
on the robot’s ability to autonomously find a sen-
sorimotor contingency through its experiences. Tri-
esch and his colleagues (Carlson and Triesch, 2003;
Lau and Triesch, 2004) introduced the scheme of
reward-based learning for a computational develop-
mental model of gaze following. They suggested that
the infant abilities of preferential looking, habitua-
tion, and reward-based learning, and an environmen-
tal setup in which a caregiver looks at an object that
an infant prefers to look at can be a basic set for the
emergence of gaze following. Shon et al. (2004a,b)
constructed a model by which a robot acquired the
ability to establish joint attention based on the imita-
tion of a human’s head movement. In their model, the
imitation was achieved based on the scheme of the in-
termodal equivalence mapping (Meltzoff and Moore,
1997). In other words, a robot could imitate a head
movement by turning its head to the same posture as
that of the human, which was estimated from an im-

age pattern of the human head. Then, the imitation of
the head movement enabled a robot to achieve joint
attention by finding an object at which the human was
looking based on a probabilistic model.

However, these models of robotic imitation and
joint attention have problems that they did not utilize
motion information detected from visual perception
and that they learned the mechanism to estimate the
posture of a human head by using the exact posture
which could not be detected by a robot. The follow-
ing section presents a developmental model by which
a robot consecutively learns to imitate and establish
joint attention by utilizing both static and motion in-
formation detected by itself.

3 Joint attention development
based on head movement imi-
tation

3.1 Developmental progress

The developmental progress of joint attention via
head movement imitation is shown in Figure 1. The
development is based on the infant abilities to interact
with an environment and learn the experiences and
encouragement by a caregiver.

An infant is supposed to have the capability to
preferentially look at salient visual stimuli, such as
a bright colored object and a human face. This basic
capability enables an infant to interact with an envi-
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Figure 1: The developmental progress of joint atten-
tion via head movement imitation.
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Figure 2: A learning model of joint attention based on head movement imitation. The visual attention controller

enables a robot to have experiences of preferentially looking at a human face and a salient object. Through the
experiences, the robot learns the sensorimotor coordination to imitate a head movement and achieve joint attention

through the lower three modules.

ronment and have experiences for learning to imitate
and establish joint attention. In early development,
an infant often has dyadic interactions with a care-
giver because of the caregiver's encouragement. A
caregiver attempts to involve an infant in face-to-face
interactions and emotionally communicate with the
infant by showing facial expressions and head move-
ments. The caregiver's movement drives the infant
to visually track the caregiver's face as an interest-
ing target, which provides experiences for learning to
imitate head movement. In other words, when the
caregiver turns his/her head vertically or laterally, the
infant also turns his/her head to almost the same di-
rection by tracking the caregiver’s face. As the result,
the infant finds an equivalence between the move-
ment of the caregiver's head and that of the infant’s
and consequently acquires the ability to imitate head
movements.
In parallel with or following the learning of head

movement imitation, an infant starts to learn to
achieve joint attention. A caregiver introduces an ob-

ject, at which an infant prefers to look, into their
dyadic interactions by presenting the infant with the
object near the line of the infant gaze. The caregiver
attempts to control the infant attention by moving the
object and shifting the caregiver’s own gaze to the ob-
ject. The caregiver's encouragement drives the infant
to change his/her attention target. The infant shifts
his/her gaze from looking at the caregiver to looking
at the object based on the abilities to imitate the care-
giver's head movement and preferentially look at a
salient object. This provides an experience for learn-
ing joint attention. The infant can acquire the sen-
sorimotor coordination for joint attention by finding

a contingency between the caregiver’'s gaze shift and
the appearance of the object.

3.2 Learning model of joint attention
based on head movement imitation

Figure 2 shows a proposed model by which a robot
incrementally learns to imitate head movements and



establish joint attention. The model consists of four
modules: a visual attention controller, an image fea-
ture detector, a learning module, and a coordinator.
The visual attention controller enables a robot to have
experiences of looking at salient visual stimuli. The
latter three modules enable the robot to learn the sen-
sorimotor coordination for imitation and joint atten-
tion through the above experiences.

3.2.1 Visual attention controller

The visual attention controller enables a robot to
have fundamental experiences for the development.
This module enables a robot to preferentially look
at salient visual stimuli, such as a human face and
a bright colored object, in an environment. A human

face and a salient object are respectively detected by

template matching and using color information from
a peripheral camera image. Figure 3 (a) shows an
example of the peripheral image, in which a human
face and a yellow object are indicated by rectangles.
In this case, the robot is controlling its gaze to look
at the human face at the center of the image. A mo-
tor command to look at the object can be generated
by multiplying the horizontal and vertical displace-
ment between the object and the center of the image
by scalar values.

3.2.2 Image feature detector

The image feature detector extracts visual informa-
tion needed to achieve imitation and joint attention.
The detector extracts the edge imaljeof a human
face and the optical flo#" of the human’s gaze shift
from foveal camera imagek_,, I;. An example of
the detected features is shown in Figure 3 (b)-(d), in
which (b) shows the foveal camera image when the
robot is gazing at the human face as shown in (a),
and (c) and (d) show the edge image and the optical
flow detected from the center area (16868 pixels)
enclosed by a rectangle in (b). The position of the en-
closed area is fixed at the center of the foveal image.
The foveal and peripheral cameras are mechanically
fixed and controlled to gaze at a visual target at the
center of the peripheral image.

The edge imag# is generated by orientation se-
lective filters. Four filters that are selective with
respect to four orientationge;, ez, e3, e4) =
(—, \o |, ) extract edge imageFk,,, wheren =
1,..., 4, each of which includes one oriented edge.
The value of each pixel,, (z, y) is calculated as

_J 1 if eu(z, ¥) > éhreshold
Ey(z, y) = { 0  otherwise,
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Figure 3: An example of input-output datasets, in

which (a) and (b) show a peripheral and a foveal cam-
era image when the robot is looking at the human; (c)
and (d) show the edge image and the optical flow de-
tected from the center area in (b); (e) shows motor
output to follow the human gaze, which is encoded in

motion direction selective neurons.

where

en(m, y) =Y, D> anli, NI(z+i, y+ )

i=—1j=-—1
1 1
130D Buli, DI +i, y+5)|. (D)
i=—1j=-—1

(z, y) indicate a position in a camera image, and the
coefficientsy,, (¢, j) andg, (i, j), are given as

0 0 0 0 0 0
ar=B3=| 0 1 1 |,8i=a3=|0 1 -1 |,
0o -1 -1 0o 1 -1
0 1 0 0 1 0
car=0,=| -1 0 1 |,B,=04=|1 0o -1 |,
0 -1 0 0 -1 0
where
aTL(_17 _1) Oén(o, _1) an(la 1)
an = | an(=1, 0) an(0, 0) an(l, 0)
an(=1, 1) «a,(0, 1) a,(1, 1)
(2



Figure 3 (c) shows the edge imadecombiningE,,
(n=1,..., 4), in which edges with one of the four
orientations,—, \, |, and ~, are colored red, cyan,
blue, and green, respectively. The edge image pro-
vides information to estimate the static direction of
the human head and allows the robot to acquire the
accurate sensorimotor coordination to achieve head
movement imitation and joint attention.

The image feature detector also extracts the opti-
cal flow F. The center area of the foveal image is
divided into small areas called receptive fields (24
24 pixels). The optical flowF™” in the k-th receptive
field is calculated as the cumulative displacement of
the image feature in the receptive field over ten image
frames:
101‘rames(gclC . px)
Zloframes(yk — ) )

where(z, yi) and(px, py) are the center position

of the k-th receptive field inf; and that of the corre-
sponding image area detected by template matching
in I,_4, respectively. Figure 3 (d) shows the optical
flow detected when the human changes her gaze from
looking straight at the robot’s camerato looking at the
yellow object shown in (a). Like the edges, the flows
are drawn with four colors. Although the optical flow
cannot provide enough information to infer the exact
direction of the human head compared with the edge
information, it gives a rough but easily understand-
able relationship with the movement direction of the
human’s head turning. Therefore, the flow informa-
tion should enable the robot to quickly acquire rough
sensorimotor coordination for head movement imita-
tion and joint attention.

In addition, the flow information is utilized as a
cue for the robot to control the timing of its own head
turning. The temporal change in the amount of the
optical flow indicates the start and end of a human’s
head turning. In other words, when the flow becomes
zero after exceeding an upper threshold, this means
that a human has shifted his/her head direction from
looking at one location to looking at another and is
gazing at a certain location. Based on this mecha-
nism, the robot obtains the input data of the optical
flow when the flow has a maximum value and the
edge image when the flow becomes zero. This en-
ables the robot to immediately follow a human’s head
turning without any explicit cue.

FF = ®)

3.2.3 Learning module

This module learns the sensorimotor coordination be-
tween the edge input and motor output and between
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Figure 4: The encoding of detected image features
into the input neurons, in which (a) and (b) show the
encoding of edge and flow inputs into the four orien-
tation selective neurons and the eight directions se-
lective neurons, respectively. The length of a line in
each circle denotes the activity of the neuron.

the optical flow and motor output through two inde-
pendent neural networks (see Figure 2). The neural
network for the edge input (the edge-NN) consists of
three layers: input, hidden, and output layers, because
edge information is difficult to interpret into the hu-
man’s head direction. In contrast, the neural network
for the optical flow input (the flow-NN) has two lay-
ers: input and output layers, because flow information
gives an easily understandable relationship with the
motor output to imitate the human’s head movement
and achieve joint attention.

Input to the edge-NN is represented as activities of
four kinds of neurons that are selective to four orien-
tations. Figure 4 (a) shows edge input encoding into
the selective neurons. The activities of the four neu-
ronsa® (n = 1,..., 4) in the k-th receptive field
are calculated as

4
ko_ gk k
ae, —En/ml?x E E},
oo

=1
where Ef =Y ") " En(x, y).

Tr Yk

(4)

E,(x, y) is given by (1), andZ* means the amount
of the edgez,, in the k-th receptive field. In the bot-
tom of Figure 4 (a), the length of a line in each circle
shows the activity of each neuron. No line means that
the activity is zero.

Like the encoding of edge input, the optical flow



is encoded in eight kinds of neurons that are selec-
tive to eight directiong f1, fo2,..., fs) = («~, .
..., ) asshown in Figure 4 (b). The activities of
the eight neurong’ (n =1, 2,..., 8)in thek-th
receptive field are calculated as

{

whereF* is given by (3), and,, are unit vectors in
eight directions. The activities of the eight neurons
are also drawn as the length of the arrows as shown
in Figure 4 (b). The methodology of coding edge and
flow information is based on physiological evidence
that the visual cortex in some animates has orienta-
tion selective neurons (Hubel and Wiesel, 1959) and
motion direction selective neurons (Barlow and Hill,
1963). The similarity in the representation of edge
and flow inputs leads to the possibility that the robot
translates a well-acquired sensorimotor coordination
in the edge-NN or the flow-NN into the other.

Outputs from the edge- and flow-NNs are repre-
sented as the activities of eight neurons, andoy,
(n = 1,..., 8), which are selective to eight mo-
tion directions(el, ..., e§) = (f1,..., fs) = («
..., /), respectively. Figure 3 (e) shows an exam-
ple of the activities of the output neurons. The rep-
resentation is similar to that of encoded optical flow
data. The activities of the output neurons are decoded
into a motor command\ @ to move the robot’s head
by the coordinator described in the next section.

F* 'un/m]?XHFkH it F*. u, >0
0

k

o = (5)

otherwise

3.2.4 Coordinator

This module coordinates motor outputs from the
edge- and flow-NNs. In the experiments discussed
here, the robot uses a simple method that generates a
motor commandA@ by decoding the mean value of
the two outputs:

whereg,., andg;;;; are scalar gainsi,,, andu,,,, are

the horizontal and vertical componentip; o, ¢, is

the mean value af.; andoy, . A motor command to
move the robot’s head is represented as displacement
angles in the pan and tilt directions.
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3.3 Learning processing

Employing the model, a robot has two-staged learn-
ing. First, a robot learns the sensorimotor coordina-
tion to imitate head movements. As a human turns

his/her head vertically and laterally in front of the
robot, the robot also turns its head to almost the same
direction by tracking the human face based on the vi-
sual attention controller. Through the experiences,
when the robot detects simultaneous activation of the
input and output neurons that are selective to the same
directions in the flow-NN, it learns the equivalence of
the movement by multiplying the connecting weights
between the neurons. This leads to the ability to imi-
tate head movements. Next, the robot learns the sen-
sorimotor coordination for joint attention. The human
starts to introduce an object into the human-robot
dyadic interactions. When the human shifts his/her
gaze direction from the robot to the object by turning
his/her head, the robot first imitates the head move-
ment based on the acquired sensorimotor coordina-
tion and then changes its gaze from looking at the
human to looking at the object based on the visual
attention controller. This provides a sensorimotor ex-
perience of joint attention. The robot learns the sen-
sorimotor coordination in the edge- and flow-NNs by
back propagation based on the input-output dataset
obtained in the above process and consequently ac-
quires joint attention ability.

4 Preliminary experiment

4.1 Experimental setup

As a preliminary experiment, the model was evalu-
ated with a focus on the role of movement in learn-
ing joint attention. The model was implemented into
an infant-like robot, callednfanoid (Kozima, 2002),

shown in Figure 5, which was developed by our group

Figure 5: Human-robot joint attention, in which an
infant-like robot, calledinfanoid, is looking at the
stuffed toy that the human is looking at.



as a tool for investigating the cognitive development
in human infants. Infanoid has a stereo-vision head
with three degrees of freedom (DOFs) in its neck (one
for the pan and two for the tilt directions) and three
DOFs in its eyes (two for the each pan and one for
the common tilt directions). Each eye has two color
CCD cameras: a peripheral camera and a foveal cam-
era, and the two camera images from the left eye were
used in the experiment. The three DOFs in the neck
were used to move the robot’s head while the three
DOFs in the eyes were fixed at the center positions.
The displacement angl&a#,;;; derived from (6) was
equally divided into the two tilt DOFs in the neck.

A human sat face to face with Infanoid and inter-
acted with it by using a salient object. In every trial,
the human replaced the object at random positions
and then changed her gaze from looking at the robot
to looking at the object by turning her head. The hu-
man always looked at the object in front of her face.

4.2 Evaluating the role of movement in
learning joint attention

The role of motion information in learning joint at-
tention was evaluated. In this experiment, Infanoid
learned to establish joint attention without learning
to imitate. In other words, the robot learned a con-
tingency between the human’s head turning and the
object appearance to acquire the sensorimotor coordi-
nation for joint attention through the edge- and flow-
NNs without using any pre-acquired sensorimotor co-
ordination to imitate head movements.

Figure 6 shows the changes in joint attention per-
formance over the learning period, in which the hori-
zontal and vertical axes respectively denote the learn-
ing step and the success rate of joint attention. The
success of joint attention means that the robot looks
at the object at which the human is looking withi8
degrees of error. The learning experiment was con-
ducted off-line by repeatedly using 200 input-output
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Figure 6: The change in the task performance of joint
attention over the learning period. The red, blue, and
green lines indicate the results when the model uti-
lized both the edge and flow inputs, only the edge
input, and the flow input, respectively.

mance. This complementary result can be expected
from the characteristics of the two inputs. By using
both the edge and flow inputs, the model enabled the
robot to quickly acquire the high performance of joint
attention by combining the advantages of the two in-
puts.

4.3 Joint attention experiment after
learning

The acquired sensorimotor coordination was evalu-
ated in joint attention experiments. Figure 7 (a) and
(b) show the two cases of input-output datasets when
the robot attempted to achieve joint attention based on
the acquired NNs. In case (a), the human shifted her
gaze from looking at the robot to looking at an object
in the outer left side of the foveal image. In case (b),
the human shifted her gaze direction from the robot to
an object in the outer lower right of the foveal image.
The upper side of each figure shows the change in the

datasets acquired beforehand, and the sensorimotor foveal image when the robot shifted its head direc-

coordination acquired through learning was evalu-
ated in joint attention experiments every 200 learning
steps. The red line plots the result when the model
used both the edge and flow inputs. The blue and
green lines plot the results when the model used only
the edge or the flow input, respectively. The graph
shows the mean result of fifty experiments with dif-

ferent initial conditions and its standard deviation.

Comparing the results for when the robot used either
the edge or the flow input, it is confirmed that the flow

input accelerated the start-up time of learning while
the edge input gradually improved the task perfor-

tion based on the output from the coordinator shown
in the lower side. From these results, we can see that
both the edge-NN and the flow-NN generated appro-
priate output to achieve joint attention. In these two
cases, the robot was able to find the object at which
the human was looking and establish joint attention.
The success rate of joint attention with the same per-
son as in the learning experiment was 90% (18/20 tri-
als). In addition, we can confirm from this result that
the flow-NN acquired one-to-one correspondence be-
tween the activities of the input and output neurons.
The direction of the motor output from the flow-NN is
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(a) In the case that the human shifted her gaze direction from the
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(b) In the case that the human shifted her gaze direction from the
robot to an object in the outer lower right of the foveal image.

Figure 7: The input-output datasets when the robot
attempted to achieve joint attention based on the ac-
quired NNs. The robot was able to establish joint at-
tention in these two cases.

clearly corresponding with the same direction of the
optical flow. This means that the sensorimotor equiv-
alence, which should be acquired through imitation
learning, is also utilized in joint attention.

5 Discussion and ongoing work

This paper has presented a developmental model by
which a robot learns joint attention based on head
movement imitation. The preliminary experiments
showed that the model accelerated the learning of
joint attention by using movement information and
that the equivalence of self and other movement was
utilized to achieve joint attention. This result supports
the idea that joint attention emerges through the expe-
riences of head movement imitation. Ongoing work
is to examine that learning to imitate head movements
facilitates the development of joint attention. This is
expected to lead to the possibility to reveal the role
of other neonatal imitation, such as tongue protrusion
and hand opening-closing, in the development of so-
cial and cognitive capabilities of infants. Another is-
sue to be solved is to develop a mechanism that en-
ables a robot to recognize not only head directions
but also gaze directions. It was assumed in the ex-
periments that a human shifted his/her gaze by turn-
ing his/her head and looked at an object in front of
his/her face. This assumption is likely in joint atten-
tion by infants. However, infants can acquire the abil-
ity to recognize gaze directions. To solve the prob-
lem, | will apply a mechanism that changes the res-
olution of the receptive fields in the NNs as learning
proceeds. Such mechanism will increase the resolu-
tion around the image area including important facial
features, e.g. eyes and mouth, and consequently en-
able a robot to acquire the ability to recognize gaze
directions.
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