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Abstract— To realize natural human-robot interactions and
investigate the developmental mechanism of human communi-
cation, an effective approach is to construct models by which a
robot imitates cognitive functions of humans. Focusing on the
knowledge that humans utilize motion information of others’
action, this paper presents a learning model that enables a
robot to acquire the ability to establish joint attention with a
human by utilizing both static and motion information. As the
motion information, the robot uses the optical flow detected
when observing a human who is shifting his/her gaze from
looking at the robot to looking at another object. As the
static information, it extracts the edge image of the human
face when he/she is gazing at the object. The static and motion
information have complementary characteristics. The former
gives the exact direction of gaze, even though it is difficult to
interpret. On the other hand, the latter provides a rough but
easily understandable relationship between the direction of Fig. 1. Human-robot joint attention, in which an infant-like robot, called
gaze shift and motor output to follow the gaze. The learning Infanoid [11], is looking at a stuffed toy that a human is holding in her
model utilizing both static and motion information acquired hand by following the direction of her gaze.
from observing a human’s gaze shift enables the robot to
efficiently acquire joint attention ability and to naturally
interact with the human. Experimental results show that the

motion information accelerates the learning of joint attention . - . . .
while the static information improves the task performance. human infants. The ability enables infants to interact with

The results are discussed in terms of ana|ogy with Cognitive adults and |eal’n from adults As |t |S ImpOI’tant fOI’ |nfantS,

development in human infants. joint attention ability could play an important role for a
~ Index Terms—human-robot joint attention, learning, mo-  robot to achieve natural interactions and acquire knowledge
tion information, optical flow from humans.

The author [18], [19] proposed learning models by which
a robot acquired joint attention ability through interactions

To design artificial models that imitate abilities of humanwith a human. On the basis of cognitive developmental
beings or other animals is an effective methodology to defindings, | have been investigating how a robot with limited
velop intelligent and adaptive robots. Especially in studiesand immature capabilities, like those of infants, acquires the
on human-robot communication, implementing human-likeability to follow human gaze. As a related study, Triesch
cognitive models into a robot helps the robot and a huma@and his colleagues [6], [13] have been investigating joint
to understand each other’s internal states. This understandttention development in infants by taking a computational
ing can lead to the emergence of natural human-robatpproach in closely cooperating with cognitive develop-
communication. In addition, it is interesting to investigatemental research. There are a number of studies aiming at fa-
how a robot develops and learns such cognitive capabilitiesilitating human-robot interactions based on joint attention
through interactions with a human from a constructivist[3], [8] and discussing further cognitive development based
viewpoint [1]. The author [18], [19] has focused on joint on joint attention [12], [21]. Joint attention mechanisms not
attention as a form of nonverbal communication between anly between a human and a robot but also between two
robot and a human (see Fig. 1). Joint attention is defined a®bots have been developed [10]. This recent work related
a process to look at an object that someone else is looking human-robot/robot-robot joint attention demonstrates the
at by following his/her gaze [5]. Through this interaction, significance of joint attention in communication. However,
human beings are able to infer others’ internal states, i.@he joint attention models described in the recent work have
desire, intention, knowledge and so on, and to naturallytilized only static information from another agent, e.g.
interact with others. Many researchers [4], [17], [20] inthe posture and/or the face direction of the agent, but did
cognitive science and developmental psychology place imaot use any visually perceived motion information from
portance on joint attention ability for social development inanother agent.

I. INTRODUCTION
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Fig. 2. A learning model of joint attention utilizing the edge image of a human face as static information and the optical flow of the human’s gaze
shift as motion information.

Human beings clearly utilize motion information from using an infant-like humanoid robot, calléafanoid [11],
others’ action. That is, we receive cues from others’ moveshown in Fig. 1. The experimental results show that the mo-
ments from which we infer their desires and intentions.tion information accelerates the learning of joint attention
Movement provides novel information unlike static infor- while the static information improves the task performance.
mation. For instance, it has been suggested that motion The following section explains the learning model of
information facilitates infants’ learning of joint attention joint attention utilizing static and motion information. Ex-
[14], [16]. Studies on neonatal imitation, which precedegperiments are then described, and their results are discussed
the development of joint attention, indicated the importancén terms of analogy with cognitive development in human
of movement in eliciting facial and manual imitations by infants. Conclusions and future work are given at the end.
newborns [9], [22]. In addition, physiological evidence
indicates that some animates have selective neurons
motion directions in the visual cortex [2]. These findings
from cognitive science, developmental psychology, and A learning model of joint attention utilizing both static
neuroscience support the validity of utilizing motion infor- and motion information is shown in Fig. 2. The model

mation acquired from others for designing communicatiorconsists of three modules: an image feature detector, a
mechanisms for a robot. learning module, and a coordinator. Utilizing the model,

This paper presents a learning model by which a robo@ robot learns the sensorimotor coordination between the
acquires the sensorimotor coordination to establish joineamera imagesl;_; and I, from which the edge image
attention with a human by utilizing both motion and staticand the optical flow of human gaze are detected, and the
information acquired from observing a human’s gaze shiftmotor outputA# to follow the gaze. The mechanisms of
The motion information is the optical flow detected whenthe three modules are explained below.
the robot is observing a human who shifts his/her gaze,
from looking at the robot to looking at another object. The"
static information is the edge image extracted when the The image feature detector extracts the edge imége
robot is looking at the human while he/she is gazing aff & human face and the optical flo# of the human's
the object. These two kinds of information have comple-gaze shift from the camera imagds_,, I;. The edge
mentary characteristics. The former provides a rough bufmage provides static information while the flow provides
easily understandable relationship between the direction dhotion information. An example of input-output datasets is
a gaze shift and motor output to follow the gaze. The latteghown in Fig. 3, in which (a) and (b) show a peripheral and
gives the exact gaze direction, even though it is difficulta foveal camera image; (c) and (d) show the edge image
to interpret. The learning model utilizing both static andand the optical flow detected from the center area (168
motion information enables a robot to efficiently acquire x 168 pixels) enclosed with a rectangle in (b); (e) shows

joint attention ability and to establish natural interactionsthe output to follow the human gaze. The position of the
with a human. The validity of the model was examined enclosed area is fixed at the center of the foveal image. The

robot controls the directions of the peripheral and foveal

HJ L EARNING MODEL OF JOINT ATTENTION UTILIZING
EDGE IMAGE AND OPTICAL FLOW

Image Feature Detector



cameras, which are mechanically fixed, so that it looks algs
the human face at the center of the peripheral image.
The edge imageF is generated by orientation selective

filters. Four filters that are selective with respect to fourm
orientations(es, ez, €3, e4) = (—, \, |, /) extract edge k"
imagesE,,, wheren = 1,..., 4, each of which includes
one oriented edge. The value of each pi¥g)(x, y) is
calculated as

1 if ez, y)>e
E,(z, y) = { 0 othenrwi’se, RLCELD (a) peripheral camera image (b) foveal camera imagek;

where
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(z, y) indicate a position in a camera image, and the
coefficients,«,, (¢, j) andg,(i, j), are given as (c) edge imageE (d) optical flow: F

0 0 0 0 0 0
ar =85 = l 0 1 1 1 , Bi=as= [ 0 1 -1 ] , Fig. 3. Anexample of input-output datasets: (a) and (b) show a peripheral
0 1

0o —1 -1 —1 and a foveal camera image when the robot is looking at the human; (c)
1 1 and (d) show the edge image and the optical flow detected from the center
0 0 0 0 area in (b); (e) shows motor output to follow the human gaze, which is
oar=03,=| —1 0 1], Bo=as=|1 0 —1 ], encoded in motion direction selective neurons.
0 -1 0 0 -1 0
where
an(=1,-1) @, (0,-1) a,(1,-1) information, it gives a rough but easily understandable
o, = | an(—=1, 0) a,(0, 0) a,(1, 0) |. (2 relationship with the motor output to follow the gaze.
an(=1, 1) a,(0, 1) a,(1, 1) Therefore, the flow information should enable the robot

to quickly acquire the rough sensorimotor coordination of
joint attention.
In addition, the flow information is utilized as a cue

Fig. 3 (¢) shows the edge imag& combining E,,
(n =1,..., 4). Edges with one of the four orientations,

=\ l.’ and/, are coI(_)red red, cyan, blug, a}nd 9"€€MNitor the robot to control the timing of its own gaze shift.
respectively. The edge image provides static mformatlonl.he temporal change in the amount of the optical flow

to estimate the direction of human gaze and allows th?ndic:ates the start and end of the human’s gaze shift. In

robot to acquire the accurate sensorimotor coordination fo&ther words, when the flow becomes zero after exceeding

joint at;entlon. . an upper threshold, this means the human has shifted her
The 'mage f_eature d_etector also extracts the optical flo aze direction from one location to another and is gazing
.F as ”.‘0“‘.“? mformauon. The center area of the fovgalat a certain location. Based on this mechanism, the robot
'mage 15 d|V|ded_|nto small image areaskcglled receptive)tains the optical flow when the flow has a maximum
fields .(24>.< 24. pixels). The optical flows” n the k-th value and the edge image when the flow becomes zero. It
receptive field is calculated as the cumulative dlsplaceme%en generates a motor command based on the inputs. This
of the image feature in the field over ten image frames: enables the robot to immediately follow the human’s gaze

10frames(xk shift without any explicit cue.

— px)

10frame ’ (3) .

> Tk — py) B. Learning Module

where (x, yr) and (pz, py) are the center position of  This module learns the sensorimotor coordination be-
the k-th receptive field inl; and that of the corresponding tween the edge input and motor output and between the
image area detected by template matchind,in,, respec- optical flow and motor output through two independent
tively. Fig. 3 (d) shows the optical flow detected when theneural networks (see Fig. 2). The neural network for edge
human changes her gaze from looking straight at the robot®put (the edge-NN) consists of three layers: input, hidden,
camera to looking at the yellow object shown in (a). Likeand output layers, because edge information is difficult to
the edges, the flows are drawn with four colors. Althoughinterpret into the human’s gaze direction. In contrast, the
the optical flow cannot provide enough information to neural network for optical flow input (the flow-NN) has two
infer the exact gaze direction compared with the edgdayers: input and output layers, because flow information

FF =



edgeimage: - optical flow: - Output from the edge- and flow-NNs is represented
Ek . el — | as the activities of eight neurons., and oy, (n =
—‘ 1,..., 8), which are selective to eight motion directions
\ X \ S (e, k) =(f1,..., fs) = (+—..., /), respectively.
\ . ) . The representation of the output neurons is similar to that

ctivitiesof O) iviticsof OO0 of encoded optical flow data. The activities of the output
inp'l\,/t' ,'fur%ns O O inp'LYt' ,']fur%ns neurons are decoded into a motor commaxé to rotate
inthe edge-NN: | inthe flow-NN:", the robot’s head by the coordinator.
O OO y
C. Coordinator

This module coordinates motor output from the edge-
(a) the encoding of edge input  (b) the encoding of flow input and flow-NNs. In the experiments, the robot used a simple

method that generated a motor commak@ by decoding
Fig. 4. The encoding of detected image features into the input neurons, ithe mean value of the two outputs:
which (a) and (b) show the encoding of edge and flow inputs into the four-
orientation selective neurons and the eight-direction selective neurons, AOon Ipan Z Un, O¢’ f
respectively. The length of a line in each circle denotes the activity of the =~ A0 = P = P o " 6
P 4 9 y [ Abyiy Gtit D, Un, Oc' f,, ©)

neuron. No line means there is zero activity.
whereg,., andgg;;; are scalar gainsj,,, andu,,, are the
horizontal and the vertical componentsadn; o. ¢, is the
gives an easily understandable relationship with the motop - val,ue OfOe%. andoy,. A motor c_ommand to rotate .
output to follow the human's gaze shift the robot’s head is represented as displacement angles in

Input to the edge-NN is represented as activities of fou}he pan and tilt directions.

kinds of neurons that are selective to four orientationsD. Learning Processing
Fig. 4 (a) shows edge input encoding into the selective The ropot acquires the sensorimotor coordination to

9

neurons. The activities of the four neuron§ (n = achieve joint attention with the edge- and flow-NNs
L,..., 4) in the k-th receptive field are calculated as  hrough supervised learning. The learning processing as-
4 sumes that the object the human is looking at can be

af = E"/max Z EF detggtgd in the per_iph(_aral image by using a given color
ko= definition as shown in Fig. 3 (a), and that the robot can gaze
where EF — Z ZEn(JJ, v). 4) at the object to obtain the correct output. Note that the pe-

ripheral image cannot be used in joint attention experiments
conducted after learning; that is, the robot cannot detect the
E,(x, y) is given by (1), andz* means the amount of the position of the object that the human is looking at in the
edgee,, in the k-th receptive field. In the bottom of Fig. 4 joint attention experiment. In learning processing, the robot
(@), the length of a line in each circle shows the activity ofencodes the motor commanlé obtained when looking
each neuron. No line means that the activity is zero. at the object into the eight-direction selective neurons by
Like the encoding of edge input, the optical flow is Using the inverse method to (6) and then independently
encoded in eight kinds of neurons that are selective téearns the two NNs by back propagation. Fig. 3 (e) shows

Tk Yk

eight directions(f1, fo,..., fs) = (—, ~...., ) as the motor output obtained when the robot changed its gaze
shown in Fig. 4 (b). The activities of the eight neurm{;s from looking at the human to looking at the object detected

(n=1, 2,..., 8) in the k-th receptive field are calcuiated in (a). The output data is used as the teacher signal for
as learning. The independent learning of the two NNs enables

. p N the robot to achieve joint attention using only one input,
k { F"uy fmax|[F7 i F7 w20 () either edge or flow input.

a =
fn i
0 otherwise [1l. EXPERIMENTS

where F* is given by (3), andu,, are unit vectors in eight A. Robot and Experimental Setup

directions. The activities of the neurons are also drawn as The validity of the model was evaluated usihdanoid

the length of the arrows in the circles as shown in Fig. 4 (b)[11], shown in Fig. 1, which was developed by our group as
The methods for codings edge and flow information area tool for investigating the cognitive development of human
based on physiological evidence that the visual cortex ifinfants. Infanoid has a stereo vision head with three degrees
some animates has orientation selective neurons [7] anaf freedom (DOFs) in its neck (one for the pan and two
motion direction selective neurons [2]. The similarity in for the tilt directions) and three DOFs in its eyes (two for
the representation of edge and flow inputs leads to ththe each pan and one for the common tilt directions). Each
possibility that the robot may be able to translate a well-eye has two color CCD cameras: a peripheral camera and a
acquired sensorimotor coordination in the edge-NN or thdoveal camera. In the experiments described here, Infanoid
flow-NN into the other. used two left camera images: a foveal image for extracting
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Fig. 5. The change in the task performance of joint attention over the

learning period. The red, blue, and green lines indicate the results whe
the model utilized both edge and flow inputs, only the edge input, an
the flow input, respectively.

a) In the case that the human shifted her gaze from looking at the robot
o looking at an object in the outer left side of the foveal image.

foveal image

edgeimage: E

the edge image and the optical flow of human gaze an o
a peripheral image for detecting the salient object that th¢-
human was looking at during learning processing. The thre
DOFs in the neck were used to change the robot's gaz
direction while the three DOFs in the eyes were fixed at;
the center positions. The displacement anytg;;; derived ‘
from (6) was equally divided into the two tilt DOFs in opt
the neck. The human sat face to face with Infanoid ang |
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trial, the human replaced the object at random positions anr— \ OOO OOO
then changed her gaze from looking at the robot to looking . - O @ D> @
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front of her face.

; ; (b) In the case that the human shifted her gaze from looking at the robot
B. Learning Experiment to looking at an object in the outer lower right of the foveal image.

The model was first evaluated in the learning experi-
ment. The experiment was conducted off-line by using 20Gig. 6. The input-output datasets when the robot attempted to achieve
input-output datasets that Infanoid acquired beforehandqintattenti_on t_)y using the acquired model. The robot was able to establish
The datasets were repeatedly used for learning. Fig. &M attentionin these two cases.
shows the changes in joint attention performance over the
learning period, where the horizontal and the vertical axes ) ) ) ]
respectively denote the learning step and the success rdte Joint Attention Experiments after Learning
of joint attention. The success of joint attention means that The model acquired through learning using edge and
the robot looked at the object that the human was lookindlow inputs was evaluated in joint attention experiments.
at within +8 degrees of error by using the acquired model.Fig. 6 (a) and (b) show the two cases of input-output
The red line shows the result when the model used bothatasets when the robot attempted to achieve joint attention.
edge and flow inputs. The blue and green lines show thtn case (a), the human shifted her gaze from looking
results when the model used only the edge or the flovstraight at the robot to looking at an object in the outer left
input, respectively. Each of the three lines plots the measide of the foveal image. In case (b), the human shifted
result of fifty experiments with different initial conditions her gaze direction from the robot to an object in the outer
and its standard deviation. lower right of the foveal image. The left side of each

Comparing the results for when the robot used eithefigure shows the input-output datasets of the edge- and
the edge or the flow input, we can see that the flow inpuflow-NNs, and the lower right shows the output from the
accelerated the start-up time of learning while the edgeoordinator, which is the mean value of the two outputs.
input gradually improved the task performance. This com¥rom these results, we can confirm that the two NNs
plementary result was anticipated from the characteristicgenerated appropriate output to achieve joint attention. The
of the two inputs. As the result, by using both edge and flowsuccess rate of joint attention with the same human in
inputs, the proposed model enabled the robot to quicklyhe learning experiment was 90% (18/20 trials) in random
acquire the high performance of joint attention. object positions.



IV. ANALOGY TO JOINT ATTENTION DEVELOPMENT IN
HUMAN INFANTS

The experimental results showed that motion informatio

humans. As infants do, a robot should be able to learn
the sensorimotor coordination to achieve joint attention
(hrough interacting with several persons and several ob-

can facilitate the learning of joint attention. We can find an/cts- Such learning will enable a robot to acquire more

analogy between the experimental results and developmeﬂ
of joint attention in human infants.

Moore et al. [16] found that 9-month-old infants could 1
be trained to follow an adult's gaze shift through trials
in which the infant was given experiences of an adult's
head turning in association with an interesting sight in the 2
direction of the head turning. In their experiments, only
infants presented with the movement of the head turning
could acquire the gaze following behavior, whereas infants!
not presented with the movement could not acquire the be-
havior. Lempers [14] examined the developmental changel4l
in infants’ (9- to 14-months-old) capability to comprehend
others’ pointing and gaze. They compared the capability[s]
when an infant was presented with the behaviors with
and without movement. Their observational results showed
that motion information enabled infants to understand thejg)
gaze of others. The importance of movement has also
been pointed out in neonatal imitation, which precedes them
joint attention development. Vinter [22] found that newborn
infants were more likely to imitate tongue protrusion when [8]
they observed an adult gesture with movement rather than
without movement. Meltzoff and Moore [15] showed that
newborn infants turned or moved their heads laterally in [9]
response to an adult's head turning. Such head turningo]
imitation by newborn infants could lead to gaze following
behavior. All these findings in cognitive science and devel-
opmental psychology support the importance of movemerit
in joint attention. The similarity between the cognitive
development of infants and my experimental results suggest
that the model could be helpful for understanding the[lZ]
developmental mechanism of joint attention in infants.

V. CONCLUSION AND FUTURE WORK [13]

This paper has indicated the importance of motion infor-
mation in learning human-robot joint attention. Human be{14]
ings utilize movement information detected from observing
others in order to infer their desires and intentions and tgi5]
establish natural communication. Furthermore, movement
facilitates the development of joint attention in infants. ¢
Based on this knowledge, this paper proposed a joint
attention learning model utilizing both motion and static
information acquired from observing others’ gaze shift.
Experimental results demonstrated that motion information
accelerated the learning of joint attention while static[1€]
information improved the task performance.

The coordinator should be refined so that it can produce
appropriate output according to a situation. The presert®
model generates output as the mean value of the two
outputs from the edge- and flow-NNs. The two NNs have20]
advantages that complement each other. The coordina‘ifrl]
will be re-designed so that it can take better advantage ?
the two NNs. Moreover, the learning experiments should b&2]
conducted in real-time and with natural interactions with

[17]

1] Hideki

gneral and robust joint attention ability.

REFERENCES

Minoru Asada, Karl F. MacDorman, Hiroshi Ishiguro, and Yasuo
Kuniyoshi. Cognitive developmental robotics as a new paradigm for
the design of humanoid robotRobotics and Autonomous Systems
37:185-193, 2001.

H. B. Barlow and R. M. Hill. Selective sensitivity to direction of
movement in ganglion cells of the retinéScience 139:412-414,
1963.

3] Cynthia Breazeal and Brian Scassellati. Infant-like social interac-

tions between a robot and a human caregivetaptive Behavigr
8(1):49-74, 2000.

G. E. Butterworth. Joint visual attention in infancy. In G. Bremner
and A. Fogel, editorsiandbook of infant developmemages 213—
240. Oxford: Blackwell, 2001.

George Butterworth and Nicholas Jarrett. What minds have in
common is space: Spatial mechanisms serving joint visual attention
in infancy. British Journal of Developmental Psycholod55-72,
1991.

Eric Carlson and Jochen Triesch. A computational model of the
emergence of gaze following. IRroceedings of the 8th Neural
Computation and Psychology Worksh@®03.

D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in
the cat’s striate cortexJournal of Physiology148:574-591, 1959.
Michita Imai, Tetsuo Ono, and Hiroshi Ishiguro. Physical relation
and expression: Joint attention for human-robot interaction. In
Proceedings of 10th IEEE International Workshop on Robot and
Human Communicatiqr2001.

Sandra W. Jacobson. Matching behavior in the young inf@hild
Development50:425-430, 1979.

Frédéric Kaplan and Verena V. Hafner. The challenge of joint
attention. InProceedings of the Fourth International Workshop on
Epigenetic Roboticspages 67-74, 2004.

Kozima. Infanoid: A babybot that explores the social
environment. In K. Dautenhahn, A. H. Bond, L. Canamero, and
B. Edmonds, editorsSocially Intelligent Agents: Creating Rela-
tionships with Computers and Robothapter 19, pages 157-164.
Amsterdam: Kluwer Academic Publishers, 2002.

Hideki Kozima and Hiroyuki Yano. A robot that learns to communi-
cate with human caregivers. Rroceedings of the First International
Workshop on Epigenetic RobotjcZ001.

Boris Lau and Jochen Triesch. Learning gaze following in space:
a computational model. IRroceedings of the Third International
Conference on Development and Learni@§04.

Jacques D. Lempers. Young children’s production and compre-
hension of nonverbal deictic behaviorsThe Journal of Genetic
Psychology 135:93-102, 1979.

Andrew N. Meltzoff and M. Keith Moore. Imitation in newborn
infants: Exploring the range of gestures imitated and the underlying
mechanismsDevelopmental Psycholog25(6):954—962, 1989.

Chris Moore, Maria Angelopoulos, and Paula Bennett. The role
of movement in the development of joint visual attentiomfant
Behavior and Developmen20(1):83—-92, 1997.

Chris Moore and Philip J. Dunham, editorgloint Attention: Its
Origins and Role in Developmentawrence Erlbaum Associates,
1995.

Yukie Nagai, Minoru Asada, and Koh Hosoda. Developmental learn-
ing model for joint attention. IProceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systerages
932-937, 2002.

Yukie Nagai, Koh Hosoda, Akio Morita, and Minoru Asada. A con-
structive model for the development of joint attentidbonnection
Science 15(4):211-229, 2003.

M. Scaife and J. S. Bruner. The capacity for joint visual attention
in the infant. Nature 253:265-266, 1975.

Brian Scassellati. Theory of mind for a humanoid robotu-
tonomous Robofs12:13-24, 2002.

Annie Vinter. The role of movement in eliciting early imitations.
Child Development57:66—71, 1986.



