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Abstract—In this paper, | discuss how visual information  gestures. It is suggested that a robot is able to detect a
about deictic gestures influences learning that enables these deictic gesture presented by a human as an edge image
gestures to be comprehended. It has been suggested that onq a5 gptical flow. The former provides information about

the ability of human infants to comprehend deictic gestures - - . . .
depends on the physical appearance of gestures, the move- the static orientation of a gesture while the latter yields

ment of gestures, and the distance between gestures and the Motion information about the gesture. What meanings the
indicated targets. To understand the mechanisms involved, | visual inputs have and how they are processed in learning to
apply a model that enables a robot to recognize the static establish joint visual attention are analyzed in comparison
orientation of a gesture as an edge image and movement as ity gych developments in human infants. The next section

optical flow. Experiments using a robot reveal that (1) learning . .
to comprehend reaching gestures with all fingers extended is first describes current knowledge about the development of

more accelerated than learning to comprehend pointing with ~ gesture comprehension in infants. The roles of visual in-
the index finger, and that (2) downward tapping movement  formation are then analyzed using a robotic model, and the
facilitates learning more than pointing movement along the  mechanism by which a robot reproduces the development
direction of the gesture. These results suggest that (1) the of intants is explained. Finally, experimental results that

guantitative difference in the edge features of reaching and iy th Vi ted al ith a di .
pointing that correspond to the directions of gestures influ- verify the analysis are reported along with a discussion.

ences learning speed, and that (2) the optical flow of tapping

movement that offers qualitatively different information from II. COMPREHENSION OFDEICTIC GESTURES BY
that provided by the edge image makes learning easier than HUMAN INFANTS
the optical flow of pointing movement.
Index Terms—deictic gesture, pointing, leaming, image The ability of infants to comprehend deictic gestures has

feature, infant development been suggested to be influenced by the physical appearance

of gestures, the movement of gestures, and the distance
between gestures and targets to be indicated.

Investigating how humans recognize gestures presented Woodward and her colleagues [7]-[9] investigated in-
by others can provide ideas for understanding our commuants’ understanding of the link between a deictic gesture
nication mechanisms and for designing robots that intera@nd a target. They studied at what age infants came to
naturally with us. | have an interest in the ability of joint understand gestures, such as grasping, pointing, and gazing,
visual attention and have been investigating how huma@as object-directed actions. Their studies revealed that 6-
infants acquire this ability from the viewpoint of cognitive month-old infants understood the relationship between a
developmental robotics [1]. Joint visual attention [2], [3] grasping gesture and the target [7], while infants came to
is a social communicative function to comprehend deicticunderstand pointing and gazing as object-directed actions
gestures, such as pointing and gazing, presented by anotHetween 9 and 12 months [8], [9]. These abilities involve
person and to look at the same target as the persoan understanding of the intention of the person making the
Understanding the mechanism underlying joint visual atgesture. However, their results suggest that infants’ ability
tention can lead to an understanding of the developmentad comprehend gestures as signal values is also influenced
mechanisms for higher cognitive functions, e.g., languagby the appearance of the gestures. Woodward [9] pointed
use and theory of mind. | have proposed some develput that infants’ ability to comprehend depends on the
opmental models for joint visual attention and examinedphysical connection between gestures and targets.
how the models enabled a robot to acquire this ability Lempers et al. [10], [11] investigated the ability of infants
through interactions with humans [4]-[6]. The experimentald-, 12-, and 14-month-old to comprehend pointing and
results offered novel perspectives for understanding thanother person’s line of gaze under several conditions of
developmental mechanisms of infants. movement and distance to the target. They found that

In this paper, | discuss how visual information aboutinfants more correctly understood the directions of pointing
deictic gestures is recognized in learning to comprehendnd gazing when they observed gestures with movement

|. INTRODUCTION
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Fig. 1. Learning model for joint visual attention using edge image and optical flow detected when observing deictic gesture. The model enables a robot
to follows the direction of a deictic gesture presented by a human. This was originally proposed by Nagai [6].

rather than without it. Moreover, infants appeared to defor how comprehension ability is influenced by the ap-
velop the ability to comprehend pointing as a function ofPearance of gestures, movement, and the distance between
the distance between the gesture and the target. Moore @@stures and targets are explained using the model.
al. [12] also examined the role of movement in infants’
learning to follow another’s line of gaze. Nine-month-olds I
were trained to follow the direction of an experimenter’s
gaze while observing an action of experimenter's gaze Fig. 1 shows the model that was proposed in [6] by
sift with head turning movement, without movement, orwhich a robot learns to establish joint visual attention with
with movement but with no static head orientation. Theira human by comprehending his or her deictic gesture. The
experiment demonstrated that only infants who observed thglidity of the model was verified in a gaze following task,
action with movement, even without static head orientationand Fig. 1 illustrates a situation where pointing is com-
could learn to follow the experimenter’s direction of gaze.prehended. Using the model, a robot learns sensorimotor
The same effect of movement in learning to follow the mapping between a camera imadecapturing a deictic
direction of pointing was reported by Rohlfing et al. [13]. gesture and a motor commam¥# to follow the direction

Butterworth and his colleagues [14], [15] investigatedof the gesture. The input image features detected ffare
how infants’ ability to establish joint visual attention an edge image® and optical flowF. The former is used
changed with age. In their experiment, 12-month-old infantgor estimating the static orientation of a gesture, while the
could follow their mother’s gaze into their visual fields |atter is for estimating the motion direction. The sensori-
and look at the same object as she did whereas 6-montnotor mapping between the two image features and motor
olds were likely to look at a nearby salient object in theoutput is acquired by using two neural networks (NNSs).
direction of her gaze. Only 18-month-olds, on the othemoteworthy characteristics of the model are:
hand, turned around to find an object when the mother . the NN for edge input consists of three layers while
was looking behind them. These results suggest that the the NN for flow input consists of two layers,
ability to comprehend another person's gaze develops as a_ ¢ qqe features and flow vectors are encoded in orien-
function of the distance between the gaze shift gesture and tation or direction selective neurons when input to the
the target. Especially whether both gestures and targets can NNs. and
be simultaneously observed in the infants’ field of view is ’
a significant factor in their ability to establish joint visual
attention.

In the next section, | present the learning model an
describe how it enables a robot to acquire the ability t
comprehend deictic gestures like infants. The mechanism

ROBOTIC LEARNING MODEL FORCOMPREHENSION
OF DEICTIC GESTURES

« output from the NNs is represented in motion direction
selective neurons.

oUsing input and output neurons that are selective to ori-
gEntation or motion direction, sensorimotor mapping can
ke represented as understandable, e.g., one-to-one mapping
between neurons with the same selectivity. The appropriate



numbers of layers enable the NNs to acquire accurat _— o
sensorimotor mapping for edge input and to learn fas T 2EIE
mapping for flow input. Refer to Nagai [6] for more detailed ;r R ~
explanations of the mechanism. i 4 L :

This section describes how the image features — an edg ,’1\ T RE o as e e ——
image and optical flow — are recognized in comprehending - ] AT NES
the directions of deictic gestures. | explain what mecha- T
nisms enable a robot to develop the ability to comprehend  (4) camera image (b) edge image  (c) optical flow
like infants.
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; ; ; it Fig. 2. Input image features detected when looking at human pointing
A. Role of Visual Information in Comprehending Pointing to lower right. The edge features in (b) and the flow vectors in (c) are

Fig. 2 shows an example of input image features detectegplored according to the orientation or motion direction.
when a robot is looking at a human gesture of pointing to
an object in the lower right of the robot’s view, in which
(a), (b), and (c) show the camera image, the edge imag:
detected from the center area of the camera image, an
optical flow.

1) Edge Image:An edge image of pointing offers in-
formation to estimate the exact direction of the gesture.
As confirmed from Fig. 2 (b), a robot can determine the
direction in which the person is pointing by interpreting
the contour of her hand. The information obtained from an  (a) camera image (b) edge image (c) optical flow
edge image is the major orientation of edge features and the
spatial dispersion of the features in the image. The formeFig. 3. Inputimage features detected when observing person’s gaze shift
provides alternative directions of a pointing gesture, ande lower left
the latter determines the correct direction. For example, the
major orientation *\” detected in Fig. 2 (b) indicates that
the person is pointing in the direction oK or “X\,” and 1) Edge Image:An edge image of a human face offers
then the spatial dispersion in the edge features determinéformation about the direction of the person’'s gaze. A
the exact direction as " Note that the model in Fig. 1 robot can estimate the person’s direction of gaze using the
does not process edge information in clearly separate waygage in Fig. 3 (b), in which the contours of her face,
as described here, but the NN is expected to acquire suatyes, nose, and mouth are extracted. The spatial dispersion
well-organized recognition ability. of edge features especially provides position information

2) Optical Flow: The optical flow of pointing provides about facial features, e.g., eyes and mouth, which enables a
a rough but easily understandable motion direction of theobot to infer the face direction. In contrast, the orientations
gesture. Here, it is assumed that humans often move the®f edge features cannot provide any useful information
hands from the axis of their bodies outward when pointingoecause the edge orientations of facial features do not
to a target. In Fig. 2 (c), the person is moving her hand fronthange with respect to face direction. For example in Fig. 3
the front of her chest ahead to her left. This assumptiorfb), the spatial dispersion of edge features extracted mostly
enables the robot to find rough correspondence between tfie the left side of the image indicates that the person is
direction of optical flow and that of pointing. However, the looking to the robot’s left. The gaze direction as well as
correspondence is less accurate than the relation betwedte face direction can be estimated using an edge image
an edge image and the direction of pointing. In contrastwith sufficient resolution.
optical flow is much more easily transformed into a motor 2) Optical Flow: Optical flow detected when observ-
command to follow the pointing direction because it has thdng human’s gaze shift provides information about the
same direction of motion. Thus, optical flow is expected tomotion direction of the person’s head and eyes turning.
accelerate the learning of sensorimotor mapping to achiewds confirmed from Fig. 3 (c), the flow yields a rough
joint visual attention. correspondence with the direction of the person’s head.

) ) ) Here, it is assumed that humans often make eye contact with
B. Role of Visual Information in Comprehending Gazeghers pefore shifting their gaze. This assumption enables
Direction a robot to detect optical flow of which direction clearly

Fig. 3 shows an example of image features detected whesorresponds to the gaze direction. However, the correspon-
a robot is looking at a human who is changing her gazelence is less accurate than the relationship between an edge
from looking straight at the robot’s camera to looking at animage and gaze direction. One reason is that optical flow
object at her lower right. does not include information about how much a person has
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object. As in the previous situation, the robot first looks at
the pointing gesture and then shifts its gaze to an object.
If only the star-shaped object is observed in the robot's
~— — view, the robot looks at the object and learns to comprehend
?\<> //C? <> pointing to a distant object. On the other hand, if both the
* * star-shaped object and the square are detected in the robot’s
view, the robot is likely to look at the square object using
mechanism (iii). In such cases, the robot cannot learn to
comprehend pointing because of the inconsistency between
visual input and motor output. However, after acquiring the
_ . _ _ ability to comprehend pointing to nearby objects in every
Fig. 4. Pomtlr}g to nearby/distant object. The large rectangle denotes thairection the robot can apply the ability for comprehending
field of a robot's view when it is gazing at human pointing. !
pointing to a distant object based on (v). Thus, the robot
develops the comprehension ability as a function of the
istance between a pointing gesture and a target as infants.

turned Ter heaﬁ. Therefore,- optlc?llflow_|s ogly expg(;:_te he ability to comprehend pointing outside the robot’s view
to accelerate the start-up time of learning by providing,s 55, acquired based on the same strategy.

an approximate but clear correspondence with the gaze

direction. IV. LEARNING EXPERIMENTS FOR

COMPREHENSION OFPOINTING
| conducted experiments to evaluate the roles of an edge
Why do infantg’ abilities to comprehend deictic gestureqmage and optical flow in learning how to comprehend
depend on the distance between the gesture and the targgfinting. The evaluation of learning to comprehend another
This section explains what mechanisms enable a robot tBerson’s line of gaze was reported in [6]. Fig. 5 shows
go through the same developmental process as infants. the experimental environment, in which a robot, called
A robot is assumed to be embedded with the following|nfanoid [18], is looking at an object a human is pointing
mechanisms, which are based on knowledge obtained frofy The robot is able to detect the pointing gesture by using
infant studies (e.g., [16], [17], and [3]): the foveal camera in its left eye and is able to control
(i) preferential lookingat motion, human faces, and its gaze direction using the six degrees of freedom in its
salient colored objects detected in the field of theeyes and neck. | compared learning performance with this
robot’s view, experimental setup when the robot was presented with one
(i) gaze shiftto another target after observing a targetof three gestures:

for a certain period of time or after detecting constant , pointing with the index finger moving in the indicated

(a) pointing to nearby object (b) pointing to distant object

C. Effect of Distance between Deictic Gesture and Target

motion of a target, direction,
(iii) target selectiorwith priority on how close the target  , reaching with all fingers extended moving in the
and current gazing position are, indicated direction, and

(iv) sensorimotor learningbased on self-evaluation of tappingwith the index finger moving downward.

experiences of looking at a preferred target, and  pginting and reaching gestures were used to evaluate the
(v) use of sufficiently acquired sensorimotor mappiag  effect edge features had, and pointing and tapping gestures

follow the direction of a deictic gesture. were used to study the effect optical flow had.
These mechanisms enable a robot to acquire the ability to

comprehend pointing to a nearby object and to a distant
object incrementally.

1) Pointing to Nearby Object:Fig. 4 (a) outlines a
robot’'s camera image capturing a gesture of human pointing
to a nearby square object. In this situation, the robot first
looks at the pointing gesture using mechanism (i), and
then shifts its gaze to the square object using (ii) and
(iif). Through experience, the robot autonomously learns
mapping between visual information about pointing and
the motor command used when gazing at the square ob-
ject based on (iv). It consequently acquires the ability to
comprehend pointing to a nearby object.

2) Pointing to Distant Object:Fig. 4 (b) outlines a
situation where a human is pointing to a distant star-shaped

Fig. 5. Overview of experimental environment.
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(a) image features of pointing (center: edge image, right: optical (a) image features of tapping (center: edge image, right: optical
flow) flow)
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005 500 1000 00 2000 we can conclude that Iearning_ to comprehend reaching was
learning step more accelerated than learning to comprehend pointing.
This may be because the edge images for reaching ges-
(c) changes in joint attention with learning tures included more edge features that corresponded to the

directions of the gestures, which helped the robot estimate

Fig. 6. Comparison of joint attention in learning to comprehend pointingthe static orientation of the gestures.
and reaching.
B. Evaluation of Role of Optical Flow

| investigated the role of optical flow in learning to
comprehend pointing. The learning performance when the
robot was presented with pointing with movement (see

The role of edge features in learning to comprehendrig. 6 (a)) was compared to those when pointing without
pointing was investigated by using two patterns for gesturesnovement or tapping (see Fig. 7 (a)) were presented. When
pointing and reaching. Examples of image features fofearning to comprehend pointing without movement, the
pointing and reaching are shown in Fig. 6 (a) and (b)robot only used edge images of pointing gestures and
Comparing the edge images, we can confirm that a reachingot optical flow. Comparing the optical flow in Fig. 6
gesture provides more edge features that corresponds to t(& and Fig. 7 (a), we can see that the movement of a
indicated direction than a pointing gesture does. Note thgbointing gesture was detected as flow vectors along the
the optical flow for the two gestures was detected as havingdge orientation of the index finger, while the movement of
almost the same pattern. a tapping gesture was detected as downward flow vectors.

Fig. 6 (c) plots the results, in which the learning perfor-Note that edge images of all gestures had almost the same
mance of comprehension of pointing (red line) and reachindeatures.
(blue line) are compared. The horizontal axis denotes the Fig. 7 (b) plots the changes in the success rate for
learning step while the vertical axis denotes the robot’qoint visual attention over learning. The red, green, and
success rate in establishing joint visual attention by follow-blue lines show the results for the comprehension of
ing the direction of the gesture with sensorimotor mappingoointing with movement, pointing without movement, and
acquired through learning. The graph plots the mean valugpping, respectively. Comparing these results reveals that
and the variance in 50 experimental results. From the graplearning to comprehend pointing and tapping was facili-

A. Evaluation of Role of Edge Features



tated by movement information. Both pointing and tappingwas trained to follow the directions of deictic gestures pre-
movements helped the robot estimate the direction thadented by a human [19], [20]. The researchers enabled the
the gestures were indicating. Moreover, the experimentathimpanzee to learn to comprehend gestures by presenting
results revealed that tapping movement accelerated learnirigpping, pointing, and gazing in stages. This means that the
more than pointing movement did. One reason may beability to comprehend gestures is acquired when gestures
that tapping gestures maintained a consistent positionab be presented are appropriately ordered. This needs to be
relationship between the gestures and targets because infestigated based on how strategies deictic gestures should
the touching actions, while the relationships varied withbe presented and how the strategies are acquired.

the pointing gestures. In addition, the optical flow for
tapping movement offered different meaningful information
from that of edge features. Whereas pointing movement!!
was detected as optical flow with the same orientation as
the edge features, tapping movement was detected with a
different orientation from that of the edge features. These!
complementary features were considered to aid the robots]
in estimating the indicated direction and acquiring the
sensorimotor mapping to establish joint visual attention.

V. DISCUSSION

| demonstrated how an artificial model enabled a robot [5]
to recognize deictic gestures presented by a human and to
learn sensorimotor mapping to achieve joint visual atten-[s]
tion. The first experiment showed that the edge features
of deictic gestures facilitated learning to comprehend them
directions of gestures. Human infants are known to under-
stand grasping gestures as object-directed actions earligf!
than they do pointing gestures [7], [8]. The experiment
using a robot revealed that different forms of gestures,[9]
such as pointing and reaching, are quantitatively different
in their edge features corresponding to the direction Oflo]
the gestures, and that the difference influences the learn-
ing speed for comprehension of the gestures. The second
experiment demonstrated that movement of deictic gesturé%l]
helped a robot acquire the comprehension ability, and that
tapping movement accelerated learning more than pointing?!
movement. This empirically supports the knowledge that
human infants correctly follow the directions of deictic ges-[13]
tures when observing gestures with movement rather than
without movement [11]-[13]. Movement of deictic ges-
tures detected as optical flow provides useful informatiorj14]
for estimating the indicated directions. Moreover, tapping
movement offers qualitatively different information from ;5
that provided by edge features. This property of movement
is considered to make learning easier and the acquired
comprehension ability more robust. The characteristic th£6]
tapping maintains a consistent positional relationship bep7]
tween the gesture and the target is also considered to assisi]
robot learning.

Future work is to investigate the learning process by
which humans also change how they present gestures to
a robot. In human caregiver-infant interactions, caregiverglg]
often modify deictic gestures into understandable ones so
that infants can respond to the gestures appropriately, anél]
they also improve these gestures as infants develop. Inter-
esting work has been done in which an infant chimpanzee

4] Y. Nagai, M. Asada, and K. Hosoda.
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