
Learning to Comprehend Deictic Gestures in
Robots and Human Infants

Yukie Nagai
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289 Japan
yukie@nict.go.jp

Abstract— In this paper, I discuss how visual information
about deictic gestures influences learning that enables these
gestures to be comprehended. It has been suggested that
the ability of human infants to comprehend deictic gestures
depends on the physical appearance of gestures, the move-
ment of gestures, and the distance between gestures and the
indicated targets. To understand the mechanisms involved, I
apply a model that enables a robot to recognize the static
orientation of a gesture as an edge image and movement as
optical flow. Experiments using a robot reveal that (1) learning
to comprehend reaching gestures with all fingers extended is
more accelerated than learning to comprehend pointing with
the index finger, and that (2) downward tapping movement
facilitates learning more than pointing movement along the
direction of the gesture. These results suggest that (1) the
quantitative difference in the edge features of reaching and
pointing that correspond to the directions of gestures influ-
ences learning speed, and that (2) the optical flow of tapping
movement that offers qualitatively different information from
that provided by the edge image makes learning easier than
the optical flow of pointing movement.

Index Terms— deictic gesture, pointing, learning, image
feature, infant development

I. I NTRODUCTION

Investigating how humans recognize gestures presented
by others can provide ideas for understanding our commu-
nication mechanisms and for designing robots that interact
naturally with us. I have an interest in the ability of joint
visual attention and have been investigating how human
infants acquire this ability from the viewpoint of cognitive
developmental robotics [1]. Joint visual attention [2], [3]
is a social communicative function to comprehend deictic
gestures, such as pointing and gazing, presented by another
person and to look at the same target as the person.
Understanding the mechanism underlying joint visual at-
tention can lead to an understanding of the developmental
mechanisms for higher cognitive functions, e.g., language
use and theory of mind. I have proposed some devel-
opmental models for joint visual attention and examined
how the models enabled a robot to acquire this ability
through interactions with humans [4]–[6]. The experimental
results offered novel perspectives for understanding the
developmental mechanisms of infants.

In this paper, I discuss how visual information about
deictic gestures is recognized in learning to comprehend

gestures. It is suggested that a robot is able to detect a
deictic gesture presented by a human as an edge image
and as optical flow. The former provides information about
the static orientation of a gesture while the latter yields
motion information about the gesture. What meanings the
visual inputs have and how they are processed in learning to
establish joint visual attention are analyzed in comparison
with such developments in human infants. The next section
first describes current knowledge about the development of
gesture comprehension in infants. The roles of visual in-
formation are then analyzed using a robotic model, and the
mechanism by which a robot reproduces the development
of infants is explained. Finally, experimental results that
verify the analysis are reported along with a discussion.

II. COMPREHENSION OFDEICTIC GESTURES BY

HUMAN INFANTS

The ability of infants to comprehend deictic gestures has
been suggested to be influenced by the physical appearance
of gestures, the movement of gestures, and the distance
between gestures and targets to be indicated.

Woodward and her colleagues [7]–[9] investigated in-
fants’ understanding of the link between a deictic gesture
and a target. They studied at what age infants came to
understand gestures, such as grasping, pointing, and gazing,
as object-directed actions. Their studies revealed that 6-
month-old infants understood the relationship between a
grasping gesture and the target [7], while infants came to
understand pointing and gazing as object-directed actions
between 9 and 12 months [8], [9]. These abilities involve
an understanding of the intention of the person making the
gesture. However, their results suggest that infants’ ability
to comprehend gestures as signal values is also influenced
by the appearance of the gestures. Woodward [9] pointed
out that infants’ ability to comprehend depends on the
physical connection between gestures and targets.

Lempers et al. [10], [11] investigated the ability of infants
9-, 12-, and 14-month-old to comprehend pointing and
another person’s line of gaze under several conditions of
movement and distance to the target. They found that
infants more correctly understood the directions of pointing
and gazing when they observed gestures with movement
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Fig. 1. Learning model for joint visual attention using edge image and optical flow detected when observing deictic gesture. The model enables a robot
to follows the direction of a deictic gesture presented by a human. This was originally proposed by Nagai [6].

rather than without it. Moreover, infants appeared to de-
velop the ability to comprehend pointing as a function of
the distance between the gesture and the target. Moore et
al. [12] also examined the role of movement in infants’
learning to follow another’s line of gaze. Nine-month-olds
were trained to follow the direction of an experimenter’s
gaze while observing an action of experimenter’s gaze
sift with head turning movement, without movement, or
with movement but with no static head orientation. Their
experiment demonstrated that only infants who observed the
action with movement, even without static head orientation,
could learn to follow the experimenter’s direction of gaze.
The same effect of movement in learning to follow the
direction of pointing was reported by Rohlfing et al. [13].

Butterworth and his colleagues [14], [15] investigated
how infants’ ability to establish joint visual attention
changed with age. In their experiment, 12-month-old infants
could follow their mother’s gaze into their visual fields
and look at the same object as she did whereas 6-month-
olds were likely to look at a nearby salient object in the
direction of her gaze. Only 18-month-olds, on the other
hand, turned around to find an object when the mother
was looking behind them. These results suggest that the
ability to comprehend another person’s gaze develops as a
function of the distance between the gaze shift gesture and
the target. Especially whether both gestures and targets can
be simultaneously observed in the infants’ field of view is
a significant factor in their ability to establish joint visual
attention.

In the next section, I present the learning model and
describe how it enables a robot to acquire the ability to
comprehend deictic gestures like infants. The mechanisms

for how comprehension ability is influenced by the ap-
pearance of gestures, movement, and the distance between
gestures and targets are explained using the model.

III. ROBOTIC LEARNING MODEL FORCOMPREHENSION

OF DEICTIC GESTURES

Fig. 1 shows the model that was proposed in [6] by
which a robot learns to establish joint visual attention with
a human by comprehending his or her deictic gesture. The
validity of the model was verified in a gaze following task,
and Fig. 1 illustrates a situation where pointing is com-
prehended. Using the model, a robot learns sensorimotor
mapping between a camera imageI capturing a deictic
gesture and a motor command∆θ to follow the direction
of the gesture. The input image features detected fromI are
an edge imageE and optical flowF . The former is used
for estimating the static orientation of a gesture, while the
latter is for estimating the motion direction. The sensori-
motor mapping between the two image features and motor
output is acquired by using two neural networks (NNs).
Noteworthy characteristics of the model are:

• the NN for edge input consists of three layers while
the NN for flow input consists of two layers,

• edge features and flow vectors are encoded in orien-
tation or direction selective neurons when input to the
NNs, and

• output from the NNs is represented in motion direction
selective neurons.

Using input and output neurons that are selective to ori-
entation or motion direction, sensorimotor mapping can
be represented as understandable, e.g., one-to-one mapping
between neurons with the same selectivity. The appropriate



numbers of layers enable the NNs to acquire accurate
sensorimotor mapping for edge input and to learn fast
mapping for flow input. Refer to Nagai [6] for more detailed
explanations of the mechanism.

This section describes how the image features — an edge
image and optical flow — are recognized in comprehending
the directions of deictic gestures. I explain what mecha-
nisms enable a robot to develop the ability to comprehend
like infants.

A. Role of Visual Information in Comprehending Pointing

Fig. 2 shows an example of input image features detected
when a robot is looking at a human gesture of pointing to
an object in the lower right of the robot’s view, in which
(a), (b), and (c) show the camera image, the edge image
detected from the center area of the camera image, and
optical flow.

1) Edge Image:An edge image of pointing offers in-
formation to estimate the exact direction of the gesture.
As confirmed from Fig. 2 (b), a robot can determine the
direction in which the person is pointing by interpreting
the contour of her hand. The information obtained from an
edge image is the major orientation of edge features and the
spatial dispersion of the features in the image. The former
provides alternative directions of a pointing gesture, and
the latter determines the correct direction. For example, the
major orientation “ ” detected in Fig. 2 (b) indicates that
the person is pointing in the direction of “↖” or “↘,” and
then the spatial dispersion in the edge features determines
the exact direction as “↘.” Note that the model in Fig. 1
does not process edge information in clearly separate ways
as described here, but the NN is expected to acquire such
well-organized recognition ability.

2) Optical Flow: The optical flow of pointing provides
a rough but easily understandable motion direction of the
gesture. Here, it is assumed that humans often move their
hands from the axis of their bodies outward when pointing
to a target. In Fig. 2 (c), the person is moving her hand from
the front of her chest ahead to her left. This assumption
enables the robot to find rough correspondence between the
direction of optical flow and that of pointing. However, the
correspondence is less accurate than the relation between
an edge image and the direction of pointing. In contrast,
optical flow is much more easily transformed into a motor
command to follow the pointing direction because it has the
same direction of motion. Thus, optical flow is expected to
accelerate the learning of sensorimotor mapping to achieve
joint visual attention.

B. Role of Visual Information in Comprehending Gaze
Direction

Fig. 3 shows an example of image features detected when
a robot is looking at a human who is changing her gaze
from looking straight at the robot’s camera to looking at an
object at her lower right.

(a) camera image (b) edge image (c) optical flow

Fig. 2. Input image features detected when looking at human pointing
to lower right. The edge features in (b) and the flow vectors in (c) are
colored according to the orientation or motion direction.

(a) camera image (b) edge image (c) optical flow

Fig. 3. Input image features detected when observing person’s gaze shift
to lower left.

1) Edge Image:An edge image of a human face offers
information about the direction of the person’s gaze. A
robot can estimate the person’s direction of gaze using the
image in Fig. 3 (b), in which the contours of her face,
eyes, nose, and mouth are extracted. The spatial dispersion
of edge features especially provides position information
about facial features, e.g., eyes and mouth, which enables a
robot to infer the face direction. In contrast, the orientations
of edge features cannot provide any useful information
because the edge orientations of facial features do not
change with respect to face direction. For example in Fig. 3
(b), the spatial dispersion of edge features extracted mostly
in the left side of the image indicates that the person is
looking to the robot’s left. The gaze direction as well as
the face direction can be estimated using an edge image
with sufficient resolution.

2) Optical Flow: Optical flow detected when observ-
ing human’s gaze shift provides information about the
motion direction of the person’s head and eyes turning.
As confirmed from Fig. 3 (c), the flow yields a rough
correspondence with the direction of the person’s head.
Here, it is assumed that humans often make eye contact with
others before shifting their gaze. This assumption enables
a robot to detect optical flow of which direction clearly
corresponds to the gaze direction. However, the correspon-
dence is less accurate than the relationship between an edge
image and gaze direction. One reason is that optical flow
does not include information about how much a person has



(a) pointing to nearby object (b) pointing to distant object

Fig. 4. Pointing to nearby/distant object. The large rectangle denotes the
field of a robot’s view when it is gazing at human pointing.

turned her head. Therefore, optical flow is only expected
to accelerate the start-up time of learning by providing
an approximate but clear correspondence with the gaze
direction.

C. Effect of Distance between Deictic Gesture and Target

Why do infants’ abilities to comprehend deictic gestures
depend on the distance between the gesture and the target?
This section explains what mechanisms enable a robot to
go through the same developmental process as infants.

A robot is assumed to be embedded with the following
mechanisms, which are based on knowledge obtained from
infant studies (e.g., [16], [17], and [3]):

(i) preferential looking at motion, human faces, and
salient colored objects detected in the field of the
robot’s view,

(ii) gaze shiftto another target after observing a target
for a certain period of time or after detecting constant
motion of a target,

(iii) target selectionwith priority on how close the target
and current gazing position are,

(iv) sensorimotor learningbased on self-evaluation of
experiences of looking at a preferred target, and

(v) use of sufficiently acquired sensorimotor mappingto
follow the direction of a deictic gesture.

These mechanisms enable a robot to acquire the ability to
comprehend pointing to a nearby object and to a distant
object incrementally.

1) Pointing to Nearby Object:Fig. 4 (a) outlines a
robot’s camera image capturing a gesture of human pointing
to a nearby square object. In this situation, the robot first
looks at the pointing gesture using mechanism (i), and
then shifts its gaze to the square object using (ii) and
(iii). Through experience, the robot autonomously learns
mapping between visual information about pointing and
the motor command used when gazing at the square ob-
ject based on (iv). It consequently acquires the ability to
comprehend pointing to a nearby object.

2) Pointing to Distant Object:Fig. 4 (b) outlines a
situation where a human is pointing to a distant star-shaped

object. As in the previous situation, the robot first looks at
the pointing gesture and then shifts its gaze to an object.
If only the star-shaped object is observed in the robot’s
view, the robot looks at the object and learns to comprehend
pointing to a distant object. On the other hand, if both the
star-shaped object and the square are detected in the robot’s
view, the robot is likely to look at the square object using
mechanism (iii). In such cases, the robot cannot learn to
comprehend pointing because of the inconsistency between
visual input and motor output. However, after acquiring the
ability to comprehend pointing to nearby objects in every
direction, the robot can apply the ability for comprehending
pointing to a distant object based on (v). Thus, the robot
develops the comprehension ability as a function of the
distance between a pointing gesture and a target as infants.
The ability to comprehend pointing outside the robot’s view
is also acquired based on the same strategy.

IV. L EARNING EXPERIMENTS FOR

COMPREHENSION OFPOINTING

I conducted experiments to evaluate the roles of an edge
image and optical flow in learning how to comprehend
pointing. The evaluation of learning to comprehend another
person’s line of gaze was reported in [6]. Fig. 5 shows
the experimental environment, in which a robot, called
Infanoid [18], is looking at an object a human is pointing
to. The robot is able to detect the pointing gesture by using
the foveal camera in its left eye and is able to control
its gaze direction using the six degrees of freedom in its
eyes and neck. I compared learning performance with this
experimental setup when the robot was presented with one
of three gestures:
• pointing with the index finger moving in the indicated

direction,
• reaching with all fingers extended moving in the

indicated direction, and
• tappingwith the index finger moving downward.

Pointing and reaching gestures were used to evaluate the
effect edge features had, and pointing and tapping gestures
were used to study the effect optical flow had.

Fig. 5. Overview of experimental environment.



(a) image features of pointing (center: edge image, right: optical
flow)

(b) image features of reaching (center: edge image, right:
optical flow)
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Fig. 6. Comparison of joint attention in learning to comprehend pointing
and reaching.

A. Evaluation of Role of Edge Features

The role of edge features in learning to comprehend
pointing was investigated by using two patterns for gestures:
pointing and reaching. Examples of image features for
pointing and reaching are shown in Fig. 6 (a) and (b).
Comparing the edge images, we can confirm that a reaching
gesture provides more edge features that corresponds to the
indicated direction than a pointing gesture does. Note that
the optical flow for the two gestures was detected as having
almost the same pattern.

Fig. 6 (c) plots the results, in which the learning perfor-
mance of comprehension of pointing (red line) and reaching
(blue line) are compared. The horizontal axis denotes the
learning step while the vertical axis denotes the robot’s
success rate in establishing joint visual attention by follow-
ing the direction of the gesture with sensorimotor mapping
acquired through learning. The graph plots the mean value
and the variance in 50 experimental results. From the graph,

(a) image features of tapping (center: edge image, right: optical
flow)
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Fig. 7. Comparison of joint attention in learning to comprehend pointing
with/without movement and tapping.

we can conclude that learning to comprehend reaching was
more accelerated than learning to comprehend pointing.
This may be because the edge images for reaching ges-
tures included more edge features that corresponded to the
directions of the gestures, which helped the robot estimate
the static orientation of the gestures.

B. Evaluation of Role of Optical Flow

I investigated the role of optical flow in learning to
comprehend pointing. The learning performance when the
robot was presented with pointing with movement (see
Fig. 6 (a)) was compared to those when pointing without
movement or tapping (see Fig. 7 (a)) were presented. When
learning to comprehend pointing without movement, the
robot only used edge images of pointing gestures and
not optical flow. Comparing the optical flow in Fig. 6
(a) and Fig. 7 (a), we can see that the movement of a
pointing gesture was detected as flow vectors along the
edge orientation of the index finger, while the movement of
a tapping gesture was detected as downward flow vectors.
Note that edge images of all gestures had almost the same
features.

Fig. 7 (b) plots the changes in the success rate for
joint visual attention over learning. The red, green, and
blue lines show the results for the comprehension of
pointing with movement, pointing without movement, and
tapping, respectively. Comparing these results reveals that
learning to comprehend pointing and tapping was facili-



tated by movement information. Both pointing and tapping
movements helped the robot estimate the direction that
the gestures were indicating. Moreover, the experimental
results revealed that tapping movement accelerated learning
more than pointing movement did. One reason may be
that tapping gestures maintained a consistent positional
relationship between the gestures and targets because of
the touching actions, while the relationships varied with
the pointing gestures. In addition, the optical flow for
tapping movement offered different meaningful information
from that of edge features. Whereas pointing movement
was detected as optical flow with the same orientation as
the edge features, tapping movement was detected with a
different orientation from that of the edge features. These
complementary features were considered to aid the robot
in estimating the indicated direction and acquiring the
sensorimotor mapping to establish joint visual attention.

V. D ISCUSSION

I demonstrated how an artificial model enabled a robot
to recognize deictic gestures presented by a human and to
learn sensorimotor mapping to achieve joint visual atten-
tion. The first experiment showed that the edge features
of deictic gestures facilitated learning to comprehend the
directions of gestures. Human infants are known to under-
stand grasping gestures as object-directed actions earlier
than they do pointing gestures [7], [8]. The experiment
using a robot revealed that different forms of gestures,
such as pointing and reaching, are quantitatively different
in their edge features corresponding to the direction of
the gestures, and that the difference influences the learn-
ing speed for comprehension of the gestures. The second
experiment demonstrated that movement of deictic gestures
helped a robot acquire the comprehension ability, and that
tapping movement accelerated learning more than pointing
movement. This empirically supports the knowledge that
human infants correctly follow the directions of deictic ges-
tures when observing gestures with movement rather than
without movement [11]–[13]. Movement of deictic ges-
tures detected as optical flow provides useful information
for estimating the indicated directions. Moreover, tapping
movement offers qualitatively different information from
that provided by edge features. This property of movement
is considered to make learning easier and the acquired
comprehension ability more robust. The characteristic that
tapping maintains a consistent positional relationship be-
tween the gesture and the target is also considered to assist
robot learning.

Future work is to investigate the learning process by
which humans also change how they present gestures to
a robot. In human caregiver-infant interactions, caregivers
often modify deictic gestures into understandable ones so
that infants can respond to the gestures appropriately, and
they also improve these gestures as infants develop. Inter-
esting work has been done in which an infant chimpanzee

was trained to follow the directions of deictic gestures pre-
sented by a human [19], [20]. The researchers enabled the
chimpanzee to learn to comprehend gestures by presenting
tapping, pointing, and gazing in stages. This means that the
ability to comprehend gestures is acquired when gestures
to be presented are appropriately ordered. This needs to be
investigated based on how strategies deictic gestures should
be presented and how the strategies are acquired.
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