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From Bottom-Up Visual Attention to
Robot Action Learning

Yukie Nagai

Abstract—This research addresses the challenge of developing
an action learning model employing bottom-up visual attention.
Although bottom-up attention enables robots to autonomously
explore the environment, learn to recognize objects, and interact
with humans, the instability of their attention as well as the poor
quality of the information detected at the attentional location
has hindered the robots from processing dynamic movements. In
order to learn actions, robots have to stably attend to the relevant
movement by ignoring noises while maintaining sensitivity to a
new important movement. To meet these contradictory require-
ments, I introduce mechanisms for retinal filtering and stochastic
attention selection inspired by human vision. The former reduces
the complexity of the peripheral vision and thus enables robots
to focus more on the currently-attended location. The latter
allows robots to flexibly shift their attention to a new prominent
location, which must be relevant to the demonstrated action.
The signals detected at the attentional location are then enriched
based on the spatial and temporal continuity so that robots can
learn to recognize objects, movements, and their associations.
Experimental results show that the proposed system can extract
key actions from human action demonstrations.

Index Terms—learning from demonstration, bottom-up visual
attention, what to imitate, key actions

I. INTRODUCTION

EARNING from demonstration and learning by imita-

tion are widely accepted methodologies for robot action
learning [1]. They investigate how robots can detect relevant
information from action demonstrations and how they translate
the information into their motor commands so as to reproduce
the actions (see [2], [3] for a deeper discussion). The former
issue is states as “what to imitate” whereas the latter is “how
to imitate.” This research focuses on “what to imitate,” which
mainly concerns robots’ attention to extract task relevant
features from visual input [4]. Although several approaches
have been proposed to address the issue, they either predefined
the candidate variables for robots to imitate (e.g., [S]-[9]) or
employed top-down architectures to modulate robots’ attention
(e.g., [10], [11]).

Bottom-up visual attention (e.g., [12], [13]), on the other
hand, has been increasingly exploited in the field of devel-
opmental robotics. It enables robots to autonomously explore
the environment [14], [15], detect and interact with humans
[16]-[18], and learn to recognize objects and their own bodies
in their visual field [19], [20]. It has also contributed to
uncovering the development of human attention [21]-[23].
Bottom-up attention is supposed to play an important role
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in infant vision. These great successes indicate the potential
of bottom-up attention for coping with “what to imitate”;
however, there has been no attempt to address the issue.

One reason is the instability of robots’ attention. Bottom-up
attention can be easily distracted by a noise or an irrelevant
feature [17], which is often observed in dynamic scenes.
Moreover, the dynamic properties of the relevant movement,
which are important for learning actions, increase the difficulty
considerably. In action learning, robots have to stably attend to
the relevant movement by ignoring noises while maintaining
the sensitivity to a new important movement. Compared to
object learning, a big challenge for robots to learn actions is
to satisfy these contradictory requirements.

Another difficulty in using bottom-up attention is the poor
quality of the information detected at the attentional locations.
For example, attentional points do not always correspond to
a certain object: only a part of an object and sometimes even
parts of several objects are included. Robots, therefore, have
to enrich the information detected at the locations so as to
learn to recognize objects involved in the demonstrated task.
In addition, the transition of attentional points is not smooth or
continuous. The attention suddenly jumps from one object to
another, and often moves within an object. Thus, robots cannot
simply trace the trajectory of their attention, but instead have
to generatively learn to produce smooth movement.

In order to address the challenges, I introduce three key
ideas: retinal filtering, stochastic attention selection, and con-
tinuity detection, inspired by biological and developmental
evidence. Retinal filtering generates an image as in human
vision: The acuity of an image is high in the fovea (i.e.,
the center of the image) whereas it gets drastically low in
the peripheral vision. This mechanism reduces the complexity
of the visual input, especially in the periphery, and thus
enables robots to enhance their focus on the currently-attended
location. A stochastic process for the attention selection then
allows robots to flexibly shift their attention to an even less
prominent location in the periphery. Such a salient location
after the filtering must be relevant to the demonstrated task. To-
gether with the retinal filtering, the stochastic attention fulfills
the contradictory requirements, i.e., stability and sensitivity.
Continuity detection subsequently enables robots to enrich
the information detected at the attentional point. It leads to
examining the relevance of the information to the task and
associating it with respect to time and space. Primitive features
like color and motion are used to calculate the continuity.

The following sections describe the proposed architecture
as well as biological and developmental evidence: Section II
gives an overview of the proposed system employing bottom-
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Fig. 1. A system architecture for action learning employing bottom-up visual
attention

up visual attention. An attentional mechanism integrated with
retinal filtering and stochastic attention selection is first ex-
plained in Section III. Then, a mechanism for learning objects
and movements based on continuity is described in Section IV.
Section V presents experimental results, where the system was
applied to action learning from human demonstrations. How
the system extracts key actions from task demonstrations is
explained there. Finally, Section VI concludes the paper with
discussion and future issues.

II. SYSTEM ARCHITECTURE FOR BOTTOM-UP ACTION
LEARNING

Fig. 1 shows the system architecture for robot action
learning employing bottom-up visual attention. The three key
ideas inspired by human vision (i.e., retinal filtering, stochastic
attention selection, and continuity detection) are applied in
order for robots to enhance and enrich their attention.

The system consists of six modules: The first three are the
retinal filtering, the saliency computation, and the stochastic
attention selection, which are responsible for selecting the
attentional location in robots’ vision. They receive an image
capturing a person demonstrating a task and determine where
robots should attend. Here an architecture based on visual
saliency is adopted as the basis for bottom-up attention. The
following three modules are the object learning, the motion
learning, and their association. They extract both objects and
movements from the attentional location and then associate
them by examining their temporal and spatial continuity. The
system finally builds an action map, where key points in the
demonstrated task are represented. For example, in a cup-
stacking task, which was used in the present experiment, the
action to grasp a cup, to lift it, and then to put it down into
another cup can be extracted as key actions for accomplishing
the task. It is suggested that the detection of such key actions
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Fig. 2. Retinal filtering for enhancing focus of robots’ attention on fovea

allows robots to learn to imitate the task not only at the motion
level but also at the goal level. The following sections explain
the six modules.

III. ATTENTION SELECTION BASED ON SALIENCY
A. Retinal Filtering

In order to reduce the complexity of visual input and
hence to stabilize bottom-up attention, a mechanism for retinal
filtering inspired by human vision is introduced. Human vision
has different acuity depending on the retinal area: in the fovea,
humans see 100 % acuity of an image whereas it rapidly drops
to 10 % or less in the peripheral vision [24]. This mechanism
causes the loss of information in the peripheral area but allows
humans to focus more on the signals perceived in the fovea.

The proposed system imitates this mechanism by filtering
the input image (see Fig. 2). The retinal image I g is created by
combining two different sharpness of the input image: a sharp
one Ig, which is directly captured from a robot’s camera, and
a blurred one Ip, which is generated by smoothing I's with
a Gaussian filter. Let xp(t — 1) = (zr, yr) be the fixation
point in the image at time ¢ — 1. The image value Ir(x,t) at
the location @ is calculated by summing Is(x,t) and Ig(x,t)
using weights with respect to the distance from x (¢ — 1):

In(a.t) = als(z,t) + (1 — a)Ip(z, 1) )

2
D 3 : 2
& —zp(t -1+ D?
The weight a(x, t) is a function of Cauchy distribution whose
center is (¢ — 1), amplitude 1.0, and diameter D.

The resulting image is shown in the right in Fig. 2. At
location 1 (i.e., the fixation point), o equals 1.0 and thus I
is as sharp as I'g. The fingers of the demonstrator’s right hand
can clearly be recognized. From location 1 to 2 and then to
3, as « becomes smaller, I gets more blurred. At location
3, Ig is as blurred as Ipg.

where

a(x,t) =

B. Saliency Computation

The effect of the retinal filtering can be observed in visual
saliency. The system next computes the saliency for I r using
the model proposed by Itti et al. [12], [13]. This section gives
only a brief description of the model. Refer to [12], [13] for
a more detailed explanation.

The saliency is calculated as the difference between the
focused pixels and the surroundings. Since robots are supposed
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(a) Saliency maps calculated from retinal image

(b) Saliency maps calculated from sharp image

Fig. 3. Saliency maps with (a) and without (b) retinal filtering. From left
to right, the orientation map, the motion map, and the final saliency map
combining five features are presented.

not to be able to distinguish demonstrators or objects from
the background, all image pixels are processed equally. The
system proposed here utilizes five features for the calculation
of saliency: color, intensity, orientation, flicker, and motion.
The first three are responsible for static features whereas the
last two are for dynamic.

Fig. 3 shows the saliency maps derived from the retinal
image (a) and from the sharp input image (b). The three maps
correspond to the orientation feature (left), the motion (center),
and the sum of the five features (right). The comparison of
Fig. 3 (a) with (b) demonstrates that the retinal filtering can
enhance the saliency in the fovea (i.e., the demonstrator’s right
hand with the green cup) while suppressing it in the periphery,
which facilitates the stabilization of robots’ attention.

C. Stochastic Attention Selection

The system then selects an image location to attend to
based on the saliency. In order to maintain the sensitivity to
a new prominent target, a stochastic algorithm for attention
selection [25], [26] is adopted. Human attention is known to be
stochastic rather than deterministic [27]. Even when humans
scan the same picture, the paths of their attention are different
between trials. It indicates that humans are sensitive to new
signals and flexibly change their attention, which enables them
to efficiently explore the environment.

First, the module for attention selection calculates the
transition probability ¢(x,t) for all image locations, which
defines the probability for robots to shift their attention from
the current fixation point g (t — 1) to x at ¢:

bty = 2 @rE=1).0) — s(@,1)))
Zexp(—ﬁ(s (xp(t—1),t) — s(z,1)))

3)

where s(x,t) is the saliency for x, and 3 a positive value.
That is, the probability becomes high if the saliency for x is
higher than that for (¢ — 1). The module then determines
the next fixation point x () using a Metropolis algorithm. It
selects a candidate location x » based on ¢(x,t), and accepts
it if

As(xp/,t) = s(xp,t) —s(xrp(t—1),t) > 0. “4)
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Fig. 4. Selective object extraction by spatial continuity. The cross and box
indicate the attentional location and extracted object area, respectively.

Otherwise xr is accepted only at the probability:
p(xp:,t) = exp (As(xp, t)/T), (5)

where 7' defines the randomness of the stochastic process.
This mechanism enables robots to shift their attention to a
more salient location but also to a less salient one with lower
probability. The system repeats this process until a newly
selected location satisfies the above condition.

IV. OBJECT AND MOTION LEARNING BASED ON
CONTINUITY

The system next learns objects and motion based on the
temporal and spatial continuity. Continuity is a basic physical
principle, which infants can also detect in terms of color,
size, and motion [28]. The mechanism for detecting continuity
enables robots not only to enrich the information detected at
the attentional location but also to examine its relevance to the
demonstrated task.

A. Object Learning

The system extracts objects from the visual input based on
the spatial continuity. Since the location selected by the above
attentional mechanism is a small image area (88 pixels) and
does not correspond to a certain object (e.g., it can contain only
a part of an object or sometimes parts of several objects), it
has to be expanded and enriched in terms of space.

Fig. 4 illustrates the mechanism. The system selectively
uses the features to examine the spatial continuity. When the
attentional location is static (the upper in Fig. 4), the system
refers to the color and the saliency. If the neighbor regions have
the same properties of these features, the object area denoted
by a box is expanded to the regions. The reason for using
the saliency in addition to the color is to eliminate irrelevant
information. Because the attentional point is often on the
contour of an object (e.g., the upper edge of the demonstrator’s
hand), the color continuity might include irrelevant features as
well as the relevant (e.g., the demonstrator’s body behind his
hand). In such a case, the saliency helps robots discriminate
the relevant information (i.e., the hand) from irrelevant (i.e.,
the body) because irrelevant locations likely have much lower
saliency. When the attentional location is dynamic (the lower
in Fig. 4), the continuity in terms of the flicker and the motion
information are examined instead. If the neighbor regions have
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Averaging optical flow

Fig. 5. Generative motion segmentation by spatial continuity. The optical
flows detected in the object area are averaged to create a motion vector.

the same amount of flicker or the same motion direction, the
object area is expanded to the regions. This mechanism enables
robots to extract an object together with the demonstrator’s
hand manipulating the object, which is important for robots to
recognize the goal-orientedness of the task.

The extracted objects are then organized by the temporal
continuity (see the upper left in Fig. 6). As long as the
object images maintain the same color histogram, they are
categorized into the same object chunk. For example, if the
demonstrator’s hand with the green cup is continuously de-
tected, it creates an object chunk, whose histogram consists of
the skin and the green color. When the demonstrator releases
the green cup into the blue one and then starts handling the
yellow cup, two new chunks are created respectively.

B. Motion Learning

The system also learns the motion concerning the object.
Here a difficulty is that the trajectory of the attentional point
is not smooth or continuous because the same object might not
always be detected. Therefore, robots cannot simply trace the
path of their attention but instead have to generatively learn
smooth and meaningful motion segments.

Fig. 5 and the lower left part in Fig. 6 illustrate the
mechanism for motion learning. The system first examines
the spatial continuity to extract a motion vector. The optical
flows detected from the object area are averaged in space.
The vector is then organized by the temporal continuity as
the object images. As long as the motion maintains the same
direction, the vectors are categorized into the same chunk and
cumulated into a meaningful motion segment. For example,
the movement of lifting a cup (i.e., upward vectors), putting
it down (i.e., downward vectors), and moving to the next cup
(i.e., leftward vectors) can form each motion segment.

C. Object and Motion Association

The system finally associates the object and the motion
in order to build an action map. Note that there is still no
guarantee that the extracted information is relevant to the task.
For example, the demonstrator’s face might be extracted as an
object chunk when he is talking to a robot. Such a social
signal, on the one hand, assists robots in finding the action
segment [29] but, on the other hand, has to be ignored when
robots reproduce the task.

Object P Action map
@y ‘~' .
/ &“
Motion M2
o3 02
tmz ‘\\\ tma time | e ‘
tma ';/IS W L M3 NS
) v

(tmi < tor < tmz < toz < twa < twa < tos)

Fig. 6. Object and motion association by temporal and spatial continuity.
The object chunks and the motion chunks are associated if they are relevant
to each other.

The key idea is the continuity across the modalities. Asso-
ciating the object chunks with the motion chunks in terms of
time and space enables robots to find the task relevance of
the information. Fig. 6 illustrates the process, where the three
object chunks and four motion chunks are already extracted.
Let to; and t;; be the time when the i-th object chunk and the
j-th motion chunk are created, respectively. The displacement
X (i) between the two consecutive object chunks is calculated
by

X (i) =zp(toi)) — xr(toi-1)- (6)
The corresponding cumulative motion M (i) is defined as
M@= > m@), (7)

toi—1<tpr;r<toi

where m(j) is the cumulative vector for the j-th motion
chunk. The association between the object chunks and the
motion chunks is established if

. X(1) - M(2)

e @M < ®
where 0 is a threshold. That is, if the displacement of the
object chunk is the same as the direction of the cumulative
movement, the two object chunks are associated by the motion
vector. In the example shown in Fig. 6, the green-cup chunk is
connected with the blue-cup by the second motion chunk (i.e.,
the motion of putting down). The blue-cup is then connected
with the yellow-cup by the third and fourth motion chunks
(i.e., the motion of moving to the next cup). These associ-
ations finally build an action map, where only the relevant
information is connected to each other. Note that even if the
demonstrator’s face is detected as an object chunk during this
period, it can be ignored as irrelevant. The face chunk would
not be connected with any other object chunks because the
displacement between the demonstrator’s face and the objects
does not correspond to the cumulative movements.

V. EXPERIMENT

The proposed system was evaluated using pre-recorded
videos where a father presented a cup-stacking task to his
infant. The author has investigated parental scaffolding for
infants’ action learning as well as for robots’ [18], [23]. The
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(a) Stochastic algorithm with
retinal filter

(b) Winner-take-all algorithm (c) Winner-take-all algorithm
with retinal filter without retinal filter

Fig. 7. Transition of attention of proposed model (a) and two comparative
models, (b) and (c). The line color corresponds to the cup color.

focus of this experiment, however, is on the evaluation of
the proposed system rather than on the analysis of parental
teaching.

A. Stability and Sensitivity of Bottom-Up Attention

The first experiment focused on the stability and the sen-
sitivity of the bottom-up attention. The effects of the retinal
filtering and the stochastic attention selection were evaluated
qualitatively.

Fig. 7 shows the result for the proposed model (a) as well
as for two comparative models: a winner-take-all' model with
the retinal filtering (b) and a model without the filtering (c).
The three colored lines (red, yellow, and green) indicate the
transition of the models’ attention when the corresponding
colored cups were moved into the blue one. First, comparing
the result shown in Fig. 7 (b) with (c), we can see the
stabilized attention achieved by the retinal filtering. Fig. 7
(b) demonstrates that the model’s attention stably followed
the cup-handling movement and never focused on irrelevant
objects like a camera at the upper-right corner of the image.
Note also that in (b) each colored trajectory reached only
the corresponding cup, whereas this was not the case in (c)
(i.e., the red cup attracted the attention even while the other
cups were being manipulated). This was due to the high color
saliency for the red cup although the cup was irrelevant at that
moment. The retinal filtering could prevent such an undesired
situation by enhancing the saliency in the foveal vision.

Next, comparing the result shown in Fig. 7 (a) with (b),
we can see the sensitivity achieved by the stochastic attention.
In this scene, the demonstrator was pointing to the blue cup
with his left hand in order to indicate the goal position for
the holding cup. The proposed model (a) as well as the
comparative one without the retinal filtering (c) could attend

'Winner-take-all is an algorithm to select the most salient location as an
attentional location in the image.

green cup yellow cup
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(a) Object and motion chunks created through task demonstration

(b) Action map for moving green, yellow, and red cups

Fig. 8.
space

Extracted key actions and their association represented in time and

to the pointing hand, whereas (b) could not. In action learning,
robots should be able to rapidly respond to such a new
movement because it is likely related to the current action.
The experimental result showed that the stochastic attention
selection coupled with the retinal filtering could meet the
contradictory requirements of stability and sensitivity.

B. Extracting Key Actions Based on Continuity

The second experiment evaluated the system’s ability to
extract and associate key points in the demonstrated action.

Fig. 8 shows the result: (a) the object and the motion
chunks created through the demonstration, and (b) their spatial
association in the action map. First, we can see from Fig. 8 (a)
that the proposed system adequately created the chunks. The
green, the yellow, and the red cups with the demonstrator’s
hand were sequentially extracted as the object chunks. The
motion chunks corresponded to the objects; for each object,
the picking-up (i.e., upward vectors), the putting-down (i.e.,
downward vectors from left to right), and the moving-next
chunks (i.e., leftward vectors) were sequentially extracted.
Note that the creation for the motion chunks did not always
coincide with for the objects. For example, an image of the
red cup can be seen on the left side of the motion chunk for
putting-down the yellow cup. This indicates that the system
continuously traced the movement of the demonstrator’s hand,
and thus the object images changed seamlessly enough to be
recognized as the same object.

Fig. 8 (b) shows the corresponding action maps, where the
object chunks were associated by the motion chunks. The map
for each cup is separately represented for clarity. We can see
from the result that a triangular association, whose corners
were the key points in the action, was generated for each cup.
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The bottom left corner of the triangle corresponded to the
action of grasping a cup, the top to lifting it, and the bottom
right to releasing it into the blue one. These three were the
important actions to achieve the cup-stacking task and were
strongly related to the goal (or the sub-goals) of the task. The
result indicated that the system was able to learn the task not
only at the motion level but also at the goal level.

VI. CONCLUSION

Investigating potentials of bottom-up faculties is a common
subject in developmental robotics. It would lead to a better de-
sign of cognitive models as well as to a deeper understanding
of human development [30]. This research has addressed the
challenge of developing an action learning model employing
bottom-up visual attention. The proposed system overcame the
difficulties by introducing biologically- and developmentally-
inspired mechanisms. The retinal filtering combined with the
stochastic algorithm achieved the stability and the sensitivity
of bottom-up attention. They enhanced the system’s attention
to the fovea while maintaining its sensitivity to the peripheral
vision. Examining continuity enabled the system to enrich the
information detected at the attentional location. The system
could extract meaningful segments of objects and movements,
and associate them to build a map representing key actions.

Integrating a mechanism for learning primitives would im-
prove the performance. Object and motion features can be
clustered to form primitives. The primitives could then be used
to learn their association not only at the temporal or spatial
level but also at the conceptual level, which facilitates the
recognition and the imitation of actions. Another interesting
issue from a developmental perspective is to analyze different
tasks as well as different teaching-learning scenarios. My
hypothesis is that key points in a demonstrated action will
be extracted differently depending on the goal-orientedness of
the task and on the ability of learners [23]. Such analytical
studies employing bottom-up architectures would contribute
to uncovering human development.
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