
Joint Attention Emerges through Bootstrap Learning

Yukie Nagai∗ Koh Hosoda∗† Minoru Asada∗†
∗Dept. of Adaptive Machine Systems,
†Handai Frontier Research Center,

Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan

e-mail: yukie@er.ams.eng.osaka-u.ac.jp,{hosoda, asada}@ams.eng.osaka-u.ac.jp

Abstract— A human-like intelligent robot is expected to
have the capability to develop its cognitive functions through
experience without a priori knowledge or explicit teaching.
In addition, the realization of this kind of robot can lead us to
understand the developmental mechanisms of human beings.
This paper proposes a bootstrap learning model by which
a robot can acquire the ability of joint attention without
a caregiver’s evaluation or a controlled environment based
on the robot’s embedded mechanisms: visual attention and
learning with self-evaluation. Through learning based on the
proposed model, the robot finds a correlation in sensorimotor
coordination when joint attention succeeds and consequently
acquires the ability of joint attention by accumulating the
appropriate correlation and losing the uncorrelated coordi-
nation as statistical outliers. The experimental results show
the validity of the proposed model.

I. INTRODUCTION

It is a challenging problem to develop a robot that can
acquire a cognitive function through interactions with
the environment withouta priori knowledge or explicit
teaching. The realization of this kind of robot reduces the
designer’s burden and could lead us to develop a human-
like artificial agent and to understand the developmental
mechanisms of human beings through it [1].

We have focused on joint attention, which is one of the
social cognitive functions, and developed a learning model
by which a robot acquires the ability of joint attention
through interactions with a human caregiver [2]. For our
purposes, joint attention is defined as the process by which
an agent attends to an object that another agent attends to
[3]. In human beings, joint attention is considered to be
a cornerstone for social communication and enables an
infant to interact with the caregiver and to receive various
kinds of knowledge from the caregiver [4], [5].

In robotics studies [6]–[9], joint attention has been
upheld as a significant function for a social robot to
realize interactions with humans. Note that these studies
have a common problem that a robot’s ability of joint
attention is considered to be innate. In cognitive science,
it is suggested that a human infant acquires the ability of
joint attention through interactions with its environment
without explicit teaching [4]. Therefore, the above robotics
studies could not explain the developmental mechanisms

of the human infant. On the other hand, Faselet al. [10]
proposed an idea how an infant could develop the ability
of joint attention. However, the validity of their idea
has not been shown by implementing it in an artificial
agent. Nagaiet al. [2] proposed a learning model for joint
attention and showed that the model enables a robot to
acquire the ability by receiving task evaluation from a
human caregiver. The caregiver plays an important role
in the robot’s development just as a caregiver would in
an infant’s development. However, it is very interesting
to argue how the robot or the infant can acquire higher
cognitive functions based on its embedded or pre-learned
capabilities without the caregiver’s intervention.

This paper presents a learning model which enables
a robot to acquire the ability of joint attention based
on its embedded capabilities without a caregiver’s task
evaluation or a controlled environment. In this paper,
independent learning without teaching, external evalu-
ation, or a controlled environment is calledbootstrap
learning. The proposed bootstrap learning model consists
of two embedded mechanisms of the robot. One is visual
attention to find and attend to a salient object in the robot’s
view, and the other is learning with self-evaluation to
evaluate the success of visual attention and then to learn
a sensorimotor coordination. Through trials and learning
based on the above mechanisms, the robot acquires the
correlation of the sensorimotor coordination when joint at-
tention succeeds while it cannot find the correlation when
joint attention fails. In the latter situation, the uncorrelated
coordination is expected to be lost as statistical outliers
since the position of the object that the robot attends
to changes randomly every trial. As a result, only the
appropriate correlation survives in the learning module
and consequently allows the robot to acquire the ability
of joint attention.

In the rest of this paper, the proposed bootstrap learning
model is first explained. Next, some experiments which
show that the robot can acquire the ability of joint attention
based on the proposed model without a controlled envi-
ronment or external task evaluation are described. Finally,
conclusions and future work are given.
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II. EMERGENCE OF JOINT ATTENTION
THROUGH BOOTSTRAP LEARNING

A. Definition of Joint Attention

Fig. 1 shows an experimental setup for joint attention, in
which a robot with two cameras, a human caregiver, and
multiple salient objects are indicated. In each trial, the
objects are placed at random positions, and the caregiver
attends to a different object. In Fig. 1, the caregiver attends
to the square object. The robot can receive a camera image
I and camera anglesθ = [θpan, θtilt] as inputs, and
output a motor command∆θ = [∆θpan, ∆θtilt] for the
camera head to rotate. The joint attention task in this
situation is defined as the process by which the robot
outputs a motor command∆θ based on the sensor inputs
I andθ, and consequently attends to the same object that
the caregiver attends to. Note that∆θ is incrementally
generated to control the camera head because of two kinds
of nonlinearity: the rotational center of the camera head
does not coincide with the optical center of each camera,
and it is impossible to determine which point along the
caregiver’s gaze is the focus of the caregiver’s attention.
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Fig. 1. An environmental setup for joint attention

B. A Basic Idea

The robot acquires the ability of joint attention through
bootstrap learning based on the following embedded ca-
pabilities:

(a) visual attention:to find and attend to a salient object
in the robot’s view, and

(b) learning with self-evaluation:to evaluate the success
of visual attention and then to learn a sensorimotor
coordination.

First, the robot attends to the caregiver because it is the
most interesting feature for the robot1. Then, if the robot
finds a salient object in its view, the robot shifts its gaze
direction from the caregiver’s face to the object based

1The preference for looking at the caregiver is also innate for a human
infant.

on the visual attention mechanism. When visual attention
succeeds, the robot evaluates it by itself and learns the
sensorimotor coordination between the inputsI, θ and
the output∆θ based on the mechanism of learning with
self-evaluation.

Note that visual attention is not always joint attention.
The reason is that there are some salient objects in the en-
vironment, and the object that the robot attends to based on
the mechanism of visual attention is just an interesting one
for the robot, but does not always correspond to the object
that the caregiver attends to. Therefore, the sensorimotor
coordination that the robot learns in each trial can be either
correct or incorrect for joint attention. The correct learning
data are acquired when joint attention succeeds, and the in-
correct are acquired when joint attention fails while visual
attention succeeds. Through the learning process, however,
the robot loses the incorrect data as outliers because it is
supposed that the object position that the robot attends
to changes randomly every trial and the sensorimotor
coordination does not have any correlation. As a result,
the robot acquires the appropriate sensorimotor correlation
only when joint attention succeeds. In addition, the robot is
expected to increase the success rate of joint attention over
chance by utilizing the acquired sensorimotor coordination
instead of the embedded mechanism of visual attention in
subsequent trials. The robot consequently can find a better
correlated coordination and acquire the ability of joint
attention through bootstrap learning without a controlled
environment or external task evaluation.

III. BOOTSTRAP LEARNING MODEL FOR
JOINT ATTENTION

The proposed bootstrap learning model, which is based on
visual attention and learning with self-evaluation, is shown
in Fig. 2. As described above, the inputs to the model areI
andθ, and the output is∆θ. The proposed model consists
of the following modules, each of which corresponds to
the embedded mechanisms: (a) visual attention and (b)
learning with self-evaluation.

(a-1) The salient feature detectorextracts distinguishing
image areas fromI.

(a-2) Thevisual feedback controllerreceives the detected
image features about objects and outputsV F ∆θ to
attend to an interesting object.

(b-1) Theinternal evaluatordrives the learning mechanism
in the learning module when the robot can attend to
the interesting object.

(b-2) Thelearning modulereceives the image of the care-
giver’s face andθ as inputs and outputsLM∆θ. This
module learns the sensorimotor coordination when it
is triggered by the internal evaluator.

The salient feature detector and the visual feedback con-
troller act as the visual attention mechanism, and the
internal evaluator and the learning module carry out the



face

color

ga
te

sa
lie

nt
 f

ea
tu

re
 d

et
ec

to
r

edge

motion ∆θθ =∆

∆θtilt

∆θpan

θpan

θtilt
θθ =

camera image

angle of
camera head

 motor command 
to camera head

internal evaluator

II

 visual attention 

visual feedback
controller

learning module

 learning with self-evaluation 

Fig. 2. Bootstrap learning model for joint attention based on visual
attention and learning with self-evaluation

mechanism of learning with self-evaluation. In addition to
these modules, the bootstrap learning model has another
module to arbitrate the output of the robot.

(c) The gate makes a choice betweenV F ∆θ and
LM∆θ, and outputs∆θ as the robot’s motor com-
mand.

The following sections explain these modules in detail.

A. Salient Feature Detector

The salient feature detector extracts distinguishing image
areas inI by color, edge, motion, and face detectors.
The color, edge, and motion detectors extract objects
(i = 1, . . . , n) which have bright colors, complicated tex-
tures, and motions, respectively. Then, the salient feature
detector selects the most interesting objectitrg among the
extracted objects by comparing the sum of the interests of
all features.

itrg = arg max
i

(α1f
col
i + α2f

edg
i + α3f

mot
i ), (1)

wheref col
i , fedg

i , andfmot
i indicate the size of the bright

color area, the complexity of the texture, and the amount
of the motion, respectively. The coefficients(α1, α2, α3)
denote how interesting each feature is and are determined
according to the robot’s characteristics and the context.
At the same time, the face detector extracts the face-like
stimuli of the caregiver. The detection of face-like stimuli
is a fundamental ability for a social agent; therefore, it
should be treated in the same manner as the detection of
the primitive features. The detected primitive feature of the
object itrg and the face-like one of the caregiver are sent
to the visual feedback controller and the learning module,
respectively.

B. Visual Feedback Controller

The visual feedback controller receives the detected image
feature of the objectitrg and outputs a motor command

V F ∆θ for the camera head to attend toitrg. First, the
controller calculates the object position(xi, yi) of itrg in
the camera image. Then, the motor commandV F ∆θ is
generated as

V F ∆θ =
(

V F ∆θpan
V F ∆θtilt

)
= g

(
xi − cx
yi − cy

)
, (2)

whereg and(cx, cy) denote a scalar gain and the center
position of the image, respectively. The motor command
V F ∆θ is sent to the gate as the output of the visual
feedback controller.

As described above, visual attention, which is one of
the robot’s embedded mechanisms, is performed by the
salient feature detector and the visual feedback controller.

C. Internal Evaluator

The other embedded mechanism, that is learning with self-
evaluation, is realized by the internal evaluator and the
learning module.

The internal evaluator drives the learning mechanism in
the learning module when

√
(xi − cx)2 + (yi − cy)2 < dth, (3)

wheredth is a threshold for evaluating whether the robot
in looking at an object in the center of the camera image
or not. Note that the internal evaluator does not know
whether joint attention has succeeded but knows whether
visual attention has succeeded.

D. Learning Module

The learning module consists of a three-layered neural
network. In the forward processing, this module receives
the image of the caregiver’s face and the angle of the
camera headθ as inputs, and outputsLM∆θ as a mo-
tor command. The caregiver’s face image is required
to estimate the motor commandLM∆θ to follow the
caregiver’s gaze direction, and the angleθ is utilized
to output LM∆θ incrementally and nonlinearly because
the caregiver’s attention cannot be narrowed down to a
particular point along the line of the caregiver’s gaze
direction. The generated motor commandLM∆θ is sent
to the gate as the output of the learning module.

In the learning process, this module learns the sen-
sorimotor coordination by back propagation when it is
triggered by the internal evaluator. As described above,
the internal evaluator drives the learning module according
to the success of visual attention, not joint attention, this
module has correct and incorrect learning data. The correct
data mean joint attention has succeeded while the incorrect
mean it has failed. In the case of correct data, the learning
module can acquire the correlation between the inputs,
the caregiver’s face image andθ, and the output∆θ.
On the other hand, in the case of incorrect data, this
module cannot find the appropriate correlation; therefore,



such data is expected to be lost as outliers through the
learning process. As a result, the acquired correlation of
the sensorimotor coordination allows the robot to realize
joint attention.

E. Gate

The gate arbitrates the motor command∆θ between
V F ∆θ from the visual feedback controller andLM∆θ
from the learning module. The gate sets a gating function
to define the selecting rate of the outputs. At the beginning
of the learning process, the selecting rate ofV F ∆θ is
set to a high probability because the learning module has
not acquired the appropriate sensorimotor coordination for
joint attention yet. On the other hand, in the latter stage of
the learning process, the outputLM∆θ from the learning
module, which has acquired the sensorimotor correlation,
gradually comes to be selected at high probability. As a
result, the robot can experience many learning situations
which include both correct and incorrect data in the early
stage of the learning process, and increase the correct ones
according to the learning advance. It allows the robot to
acquire more appropriate sensorimotor coordination for
joint attention.

IV. EXPERIMENT

To show the validity of the proposed model, it was
examined that an actual robot is able to acquire the ability
of joint attention based on the proposed model in an
uncontrolled environment in which multiple salient objects
are placed.

A. Experimental Setup

An experimental environment is shown in Fig. 3 (a), and
the left camera image of the robot is shown in (b). The
caregiver sits in front of the robot and attends to the
object in its hand. Other salient objects are set around the
caregiver at random positions. The robot has two cameras
and can turn them simultaneously to pan and tilt. The
robot receives the camera image and detects the caregiver’s
face (left in Fig. 3 (b)) and the objects (right) by the
salient feature detector. In the experiment, the degrees of
the interests of the image features in Eq. (1) are set to
(α1, α2, α3) = (1, 0, 0), and the threshold of the success
of visual attention in Eq. (3) is defined asdth = Wx/6,
whereWx is the width of the camera image.

To execute the learning in a simulated environment, the
robot acquired 125 data sets, which included a camera
image in which the caregiver’s face was extracted as a
window of 30× 25 pixels and a camera angle when the
robot attended to the caregiver, and a motor command
for the camera head to shift its gaze direction from the
caregiver to the object that the caregiver attended to in
advance. Then, in each trial, we took one data set from
the above and placed other salient objects at random

robot

object

caregiver

(a) an experimental environment

(b) the left camera image of the robot (left: the detected
result of the caregiver’s face by template matching, right:
the detected result of the bright colors)

Fig. 3. An experimental setup for joint attention

positions in the simulated environment. The number of
input, hidden, and output units of the learning module
were set to 752 (30× 25 for a camera image and 2 for
the pan and the tilt angles of the camera head), 7, and 2,
respectively. Under this condition, the robot repeated the
trials and the learning alternately based on the proposed
model.

B. Performance Change in Various Situations

It was verified that the proposed model enables the robot to
acquire the ability of joint attention in an environment that
includes multiple objects. The change of the success rate
of joint attention in terms of the learning time is shown
in Fig. 4 (a), where the number of the objects are set to
1, 3, 5, or 10. Fig. 4 (b) indicates the gating function (the
selecting rate ofLM∆θ) as a sigmoid, which showed the
best performance in some experiments. The number of
objects 1 means that the robot has only correct learning
situation every trial. By contrast, the number 10 means
that the robot can experience the correct learning situation
only at 1/10 probability at the beginning of the learning.
However, it is expected to increase the correct one by
utilizing the learning module, which has already acquired
the correlated coordination until that time, according to
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Fig. 4. The change of the success rate of joint attention and gating
function (# of objects: 1, 3, 5, or 10, gate: sigmoid)

the advanced learning. From the result of Fig. 4 (a), we
can see that the success rates of joint attention are at
chance levels at the beginning of the learning process;
however, they increase to high performance at the end
even if many objects are set in the environment. Therefore,
it is concluded that the robot can acquire the ability of
joint attention based on the proposed bootstrap learning
model without a controlled environment or external task
evaluation.

Next, the effectiveness of the sigmoid gating function
was verified. The result of Fig. 4 (a) (the number of the
object: 5) was compared with the success rate of joint
attention when the gating function was set to a constant
value. The performance changes when the gating rate
of LM∆θ is 0.7, 0.9, or 1.0 are shown in Fig. 5. The
comparison of these results indicates that the gate designed
as a sigmoid function can improve the task performance of
joint attention. Especially, when the gating rate is 1.0, the
success rate of join attention has not risen to the chance
level, that is 0.2. The reason is that the learning module
which had not acquired the appropriate correlation was
utilized in the early stage of learning, and the learning
data were biased to the initial experiences. These results
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show that the gating function should be designed so that
the output from the visual feedback controller is selected
with high probability in the beginning of learning and later
that from the learning module comes to be adopted as
learning advances, as described in Section III-E.

C. Final Performance of Joint Attention

After learning, we evaluated the final performance of the
robot that used the sigmoid function for gating and learned
in the environment with five objects. Fig. 6 shows the left
camera images of the robot in which the input and the
output of the learning module are indicated. In each of
them, the caregiver’s face image enclosed in a rectangle
of 30 × 25 pixels is the input to the learning module,
and the straight line shows the output from the learning
module of which the width and the height indicate the pan
and the tilt angles of the output, respectively. The robot
is expected to find the object that the caregiver attends to
by controlling the camera head along this line. From the
results shown in Fig. 6, it is confirmed that the learning
module can estimate the motor command to realize joint
attention since the straight line corresponds to the gaze
direction of the caregiver.

Fig. 7 shows the change of the robot’s camera image
when it shifts its gaze direction from the caregiver’s face to
the object based on the output from the learning module.
The rectangle and the straight lines on the caregiver’s
face indicate the same meanings described above, and the
circles and the cross lines show the gazing area of the
robot and the object’s position, respectively. The learning
module incrementally generates a motor command at each
step, and the robot consequently realizes the motion to
follow the caregiver’s gaze direction. During the camera
motion, if the object is detected in the circle on the image,
the robot stops its motion. This experimental result shows
that the robot can realize joint attention based on the
proposed model even if the object is far from the caregiver.
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V. CONCLUSION

The bootstrap learning model for joint attention has been
presented in this paper. The model enables the robot
to acquire the ability of joint attention by finding the
sensorimotor correlation based on two embedded mech-
anisms: visual attention and learning with self-evaluation.
Furthermore, the gate module in the proposed model
makes learning more effective by utilizing the learning
module which has already acquired the correlation. The
experimental results showed that the robot can acquire
the ability of joint attention based on the proposed model
without a controlled environment or external task evalua-
tion.

A more efficient learning mechanism should be devel-
oped so that the learning is executed not on the simulation
but on the actual robot. In addition, the gating function
should not be a deterministic one, like a sigmoid func-
tion, but designed by the performance of the robot. The

realization of these changes will make the robot a truly
developmental agent.
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